Riparazione Apparecchiature Valvolari

Amplificatori Valvolari HiFi Riparati

Riparazione e costruzione amplificatori valvolari hifi, modifiche, tarature e messe a punto, sostituzione valvole. Restauro apparecchi vintage

Questo amplificatore da CAR AUDIO del 1988 mi è stato consegnato in condizioni disastrose. Gli stampati erano sporchissimi. Un trasformatore d’uscita bruciato. Aveva subito parecchie manomissioni che comprendevano fori nel telaio, l’aggiunta di un potenziometro motorizzato che doveva essere pilotato da remoto (tutto sgangherato), cavetti di segnale (verde) non suoi, erano state sostituire le ECC81 che dovevano essere sull’ingresso con delle ECC83, aveano anche cambiato le resistenze di polarizzazione per cercare di adattare questa ECC83 con resistenze diverse e più grosse che li avevano abbligati a praticare nuovi fori sul PCB, ovviamente la parte di interfaccia con lo stadio sfasatore prevedeva degli accorgimenti per la polarizzazione della valvola che non erano stati cambiati per sopperire alla modifica del circuito, così come non era stata modificata la rete di NFB. Era stato montato e smontato non si sa quante volte, c’erano piste rotte o staccate da tutte le parti, componenti montati dalla parte alla rovescia del circuito stampato… Avevano sostituito tutti i condensatori di disaccoppiamento tra gli stadi con dei carta olio col corpo metallico che richiava di far contatti in giro, per altro tutti in perdita…

Poi come se non fosse finita, scelta infelice delle casa madre: sugli stampati del circuito audio erano montate tutte resistenze ad impasto di carbone… TUTTE e dico… TUTTE marcie ! Non ce ne era una che fosse in tolleranza! 150k? misurati 238k! 68k? misurati 92k… le 33ohm da usare come testpoint per regolare il bias? 15/16ohm (cos’ regolavi la tensione che diceva la casa madre ma di fatto regolavi quasi il doppio)… Ho dovuto lavare gli stampati da tutto lo sporco, ripulire tutte le saldature e sostituire a tappeto quasi tutti i componenti zoccoli a parte…

Anche la sezione dell’alimentatore switching era stata pastrocchiata per bene… condensatori attaccati con il biadesivo, resistenze prive di valore appese a cavolo che avevano staccato le piste… tutti i 4 collettori dei transistor scollegati… smontando l’aletta sotto o trovato fango secco, c’era fango secco sotto i condensatori blu e anche sotto i 2 trasformatori… ma era in un’auto finita in un lago ?! Anche su questo stampato le piste staccate o rotte non mancavano… Anche riparare questa sezione non è stato facile in mancanza di schema elettrico, sopratutto quando alla prima accessione mi sono accorto che mancava una tensione negativa di -200volt che avrebbe dovuto arrivare alle 6SN7… Dopo tantissimo lavoro, compreso il riavvolgimento del trasformatore d’uscita sono riuscito a rimetterlo in funzione…

Il circuito è un chiaro prodotto della cultura audio anni 80, un valvolare concepito parzialmente come si concepirebbe un’amplificatore a transistor: le valvole finali hanno la griglia controllo collegata a massa assieme al catodo e sono pilotate dalla griglia schermo collegata DC al catodo della 6SN7 configurata come inseguitore catodico. Il finale è in pura classe B con una corrente di bias che va impostata a 3mA (100mV sulla resistenza da 33ohm come indica lo schema della cassa madre), un’anello di feedback locale bilanciato tra le finali e lo sfasatore che ha lo scopo di raddrizzare la linearità della 6SN7 costretta ad erogare picchi di corrente consistenti nelle G2 delle finali e un secondo anello di NFB globale sbilanciato tra uscita dei TU e valvola in ingresso.

La potenza di picco è di 30 watt RMS per canale, quella continuativa credo finchè i 4 transistor dello switching non ci mollano o l’alimentatore in sè non va in protezione termica. Qui sotto le uniche 2 strumentali che ho acquisito, lo spettro armonico e la forma d’onda della sinusoide che mostra sporcature dello switching che però erano captate dall’analizzatore computerizzato ma non da quello analogico, roba che in ogni modo non viene riprodotta dagli altoparlanti.

Per completare il montaggio dell’apparecchio ho dovuto rifare praticamente tutti i filetti che erano spanati o rovinati o pieni di colla attak e cambiare tutte le viti. Finito e rimesso a nuovo.

Questo amplificatore mi è stato consegnato da riparare perchè guasto, era saltato il fusibile sulla scheda interna. Una delle 2 EL34 risultava spompata mentre l’altra era ancora in buona efficienza all’80% circa, ho quindi cercato nella scatola delle superstiti una gemella che potesse rimpiazzare la valvola morta a basso costo. Sostituisco il fusibile, accendo e comincio a controllare tutte le tensioni per vedere sia tutto a posto e noto subito che la resistenza di catodo di una delle 2 finali riscaldava più dell’altra, infatti la tensione dei 2 catodi era molto diversa… Una della 2 finali assorbiva molta più corrente dell’altra e se davo segnale al canale presentava una certa distorsione eppure le avevo verificate su utracer e matchavano.

Col tester finisco a misurare la tensione sulla griglia 1 delle EL34, che in teoria sarebbe dovuta essere 0 invece su una misuravo 0,5volt e sull’altra 1,2volt, subito ho pensato al condensatore di disaccoppiamento in perdita, ho scollegato un capo e l’ho provato con il tester di isolamento ma era perfetto, lo stampato non era cotto e non poteva disperdere poi mi cade l’occhio sulla resistenza di ancoraggio della griglia da 470k.

Forse l’apparecchio era stato spistolato da qualcuno, le 2 resistenze da 470k erano anche esteticamente diverse dalle altre montate e anche perchè il valore è veramente grande per ancorare la griglia di una finale di potenza, sopratutto se di produzione attuale e non NOS, in pratica basta un minimo inquinamento del vuoto della valvola o il depositarsi di vapori metallici (per via dell’invecchiamento della valvola) per creare quella minima dispersione che spolarizza la griglia in positivo e inoltre il punto di lavoro risulta instabile, la griglia non è flottante ma poco ci manca. Sostituendo la resistenza di ancoraggio con una del valore di 220k la tensione delle griglie delle finali restava stabile a 0 volt e la potenza erogata da casciun canale aumentava da 6 Watt RMS a 9 Watt RMS, non ho misurato i valori distorsivi ma sicuramente saranno diminuiti. Anche la valvola spompata che aveva causato il guasto, che se inserita nel circuito finiva con la G1 a quasi 12volt prendeva a funzionare. Questa prova mi ha permesso di escludere altri problemi dovuti a dispersioni del PCB (umidità ad esempio?!).

L’amplificatore è tornato a funzionare perfettamente. Qui sotto un paio di strumentali che indicano quello che succedeva sul modello che avevo un mano e non sono assolutamente indicativi.

Banda passante su carico resistivo

E su carico reattivo

La storia di questo amplificatore è piuttosto travagliata, apparentemente ha subito un lungo tempo in un’ambiente umido, poi è stato venduto e ha funzionato per un pò fino al momento che ha emesso una fumata e ha smesso di funzionare. Quando l’ho aperto all’interno presentava evidenti ossidature e segni di corrosione, ruggine in diversi punti e croste marroni sopratutto sul PCB del servobias che si sono poi rilevate essere il solder usato in fabbrica e mai pulito da chi l’ha montato.

Ho iniziato smontando un pò di roba, molte viti erano marcite e ho faticato un pò a rimuoverle, successivamente ho ripassato tutto i filetti con un maschio per prepararli ad accogliere una nuova vite. Ho smontato, pulito e riverniciato le ghiere che reggevano i 2 condensatori di livellamento, e pulito i condensatori stessi…

Il guasto grosso è avvenuto per colpa del solder lasciato dalla fabbrica un pò dappertutto che ha corroso il rame dei sottili fili che collegavano lo scheda del servobias alle valvole finali, questi fili si sono staccati lasciando 2 valvole con la griglia flottante che ha poi fatto la malora generando scariche sulla scheda del servobias attraverso i fili che ancora erano collegati.

Inizialmente ho cercato di riparare il PCB che si presentava con incrostazioni biancastre attorno a tutte le saldature che invece di apparire color stagno erano di un grigio scuro, l’ho pulita con pray per elettronica e spazzolino poi ho cercato di ripassare tutte le saldature brutte e che apparivano “fredde” con parecchia difficoltà perchè non fondevano e dovevo sparare la temperatura della stazione a palla e quando fondevano buttavano fuori una resina marrone che faceva la schiuma e puzzava di urina (già capitato anni fà su un’altro apparecchio made in cina, non so che cosa usino come solder e penso di non volerlo sapere), l’aspirazione dello stagno andava a termine ma bisognava ripulire la crosta marrone che si formava, durante questo processo poi ho trovato diverse linee interrotte dalla corrosione, ci ho perso sopra un pomeriggio intero. Alla fine sono riuscito a metterla in funzione ma per quanto mi fossi sforzato questa funzionava male, regolava il bias a cavolo ogni valvola diversa dalle altre, non era stabile. Evidentemente c’erano ancora linee interrotte (probabilmente nei fori passanti) e/o dispersioni tra le piste e non era più recuperabile. Nell’impossibilità di reperire la scheda di ricambio originale mi sono messo di pazienza a tirarmi giù lo schema dalla scheda, e a recuperare quei pochi componenti che potevo salvare (zener, transistor per alta tensione e altre cose) e poi l’ho ricostruita sulla 1000 fori, mi sono concesso di usare una coppia di TL082 al posto del singolo TL084 (il TL084 contiene due TL082 in un solo chip in pratica) originario solo per comodità nel doverlo montare sulla 1000 fori, il risultato è stato questo (nella foto non avevo ancora ricollegato i driver alle finali):

Il nuovo servobias ha funzionato alla perfezione alla prima accensione, l’amplificatore ha ripreso a funzionare correttamente…

Vediamo ora un’altro Primaluna Prologue TWO, a questo avevano cambianto uno dei 4 zoccoli delle finali non so per quale motivo, ma lo zoccolo sostituito creava continui problemi di contatto con i pin della valvola causando scopiettii in altoparlante.

DSCN5451

Un’occhio attento potrà notare che questo zoccolo oltretutto è del tipo per montaggio su circuito stampato e non per cablaggio in aria, i pin del tipo per pcb non sono fatti per questo tipo di montaggio, col tempo e il calore era facile che qualche saldatura si rompesse causando il distaccamento di qualche filo e danni seri.

DSCN5452

Nelle foto qui sotto si vede che ho sostituito lo zoccolo con uno adatto al montaggio in aria e quasi identico all’originale (il mio ha i contatti placati oro, quelli dell’amplificatore no).

DSCN5453

DSCN5454

L’amplificatore aveva poi bisogno di un cambio delle finali, perchè montava 2 KT88 di un tipo e 2 di un tipo diverso. Faccio quindi un’appunto sulle valvole marchiate Primaluna: molte persone considerano questi amplificatori molto buoni (a riguardo parlano le strumentali e le analisi di spettro poco più sotto in questa pagina), e spendono un surplus di soldi per comprare valvole marchiate “primaluna”… Osservate questa foto…

DSCN5459

A sinistra una KT88 “Primaluna” che era montata sull’amplificatore, a destra una KT88 della Shuguang nuova. Non credete alle fesserie markettare che le loro valvole sono migliori o hanno qualcosa di diverso, le loro sono Shuguang “timbrate” col logo primaluna e vendute a prezzo maggiorato.

Veniamo alle strumentali misurate sull’apparecchio campione con tutte le valvole nuove:

Potenza: 30 Watt RMS
Banda passante @ 1watt : 15Hz~34khz -3db
Banda passante @ 25watt: meno di 10Hz~25khz -3db con -1db a 10khz
Smorzamento: non misurabile direttamente perchè alla sconnessione del carico il circuito prende ad oscillare vistosamente, ma dall’andamento della risposta in frequenza sul carico reattivo azzarderei a ipotizzare uno smorzamento decisamente basso.
Distorsione armonica THD a 1 watt: 0,3%
Distorsione armonica THD a 25 watt: inferiore all’1%
Distorsione armonica THD sotto al clipping: lasciamo perdere.

Le analisi di spettro, a 1 watt su carico resistivo:

A 25 watt sempre su resistivo:

Mentre sul carico reattivo su accentuano le armoniche dispari

Questo il grafico di banda passante a 1watt su carico resistivo

1 watt Su carico reattivo…

 

Il negative feedback c’è ma molto poco visto il risultato sul carico reattivo, si capisce anche perchè l’ingresso è molto sensibile, basta un segnale piuttosto basso per portarlo al clipping (perdonatemi non l’ho misurato precisamente), non ho visto distorsioni della sinusoide nella zona tra gli 8 a i 15khz, distorsioni che ci sarebbero dovute essere se avessero usato tanto NFB assieme a trasformatori con banda passante così modesta, ma fa strano che sia instabile in assenza di carico, anche se comunque capita appunto con trasformatori che hanno queste bande passanti.