Luxman MQ3600 – Riparazione e Trasformatori di Ricambio

Questo è un piccolo aggiornamento di questo articolo. Mi hanno riportato indietro (a distanza di 2 anni) il 3600 devastato che potete vede più in basso in questo stesso articolo perchè il trasformatore di alimentazione aveva preso a vibrare in modo fastidioso, nessun guasto particolare ma a volte capita che col tempo qualche trasformatore di alimentazione per rilassamento del rocchetto, sopratutto se è un rocchetto di cartone come nel caso di questo trasformatore, i lamierini dentro inizino a sviluppare dei giochi. Non sono stato a prova di reimpregnare il trasformatore come fanno altri perchè so che è una cosa che conta 1 mese e poi torna tutto a vibrare di nuovo. Ho prodotto un nuovo trasformatore di alimentazione, che chi è interessato a comprare sfuso potrà ordinarmi con la sigla di 23S45.

Il vecchio TA

Il nuovo TA

Prosegue il vecchio articolo…


L’MQ3600 è un’amplificatore prodotto alla fine degli anni 70 inizio anni 80 dalla Luxman, montava come finali delle 8045G prodotte dalla NEC appositamente per Luxman, queste valvole ormai sono del tutto introvabili, quindi quando esaurite diventa obbligatorio rimpiazzarle con qualcos’altro modificando necessariamente il circuito per ospitare i rimpiazzi. Le 8045G non sono altro che dell KT88 con la griglia schermo internamente collegata all’anodo, quindi in pratica sono KT88 forzate a funzionare obbligatoriamente a triodo. La modifica di base consigliata anche dalla Luxman, all’epoca, è molto semplice e consiste nel collegare il pin della griglia schermo a quello dell’anodo tramite una piccola resistenza da 330ohm, questo permette di usare normali KT88 / 6550. È possibile anche connettere le finali in ultralineare (visto che i trasformatori sono dotati delle relative prese) invece che a triodo per ottenere più potenza. L’apparecchio nella foto qui sopra è arrivato guasto (si nota la 8045G col jetter bianco).

L’amplificatore in questione aveva subito anche danni dovuti ad un corto interno di una delle 4 finali che ha causato la bruciatura di alcune resistenze attorno agli zoccoli, la cottura di alcuni fili e il guasto ai trimmer di regolazione del bias e si era bruciata l’induttanza di filtro per la scarica dei grossi condensatori di livellamento addosso alla valvola guasta. L’induttanza è stata liberata dal catrame e riavvolta.

Oltre alle modifica sotto gli zoccoli delle finali luxman consigliava anche di inserire 2 gridstop da 22k sull’ingresso e 3 bypass nei punti B2/B3/B4 nello stampato in cui io ho montato 3 mundorf supreme classic da 1uF, ho bypassato anche i 2 piccoli elettrolitici catodici della 6AQ8/ECC85 con un polipropilene di qualità paragonabile ai mundorf da 220nF.

DSCN5193

Successivamente ho verificato le valvole di pre su uTracer e ho verificato che una delle due 6042G era per metà esaurita e metà funzionante e quindi ho dovuto sostituirle con una coppia di 6CG7. A questo proposito volevo semi smentire quello che si legge su internet: è si possibile cambiare le 6042G con le 6CG7 ma le 6042 non sono perfettamente uguali alle 6CG7, qui sotto potete vedere i tracciati acquisiti con uTracer delle 2 valvole, e si nota bene che le curve della 6042G sono più spaziate il che significa che ha un “mu” maggiore rispetto la 6CG7. Quindi la sostituzione di queste valvola causa una leggera diminuzione del guadagno complessivo e del tasso di NFB, quindi anche di timbro dell’amplificatore.

Ecco l’apparecchio finito

La prova di ascolto è stata entusiasmante, il senso di pressione e fastidio sui timpani è svanito, il suono è diventato piacevole, i piano sono vellutati e dettagliatissimi i la dinamica non manca, rispetto alla prima prova anche la tridimensionalità è migliorata, si è passati di un suono “tutto in mezzo” ad una sensazione di ambienza maggiore, con aria tra i vari suoni e anche sensazione non solo di destra e sinistra ma anche di alto e basso.

Un pò di strumentali

Queste sono le misure strumentali che ho rilevato dall’apparecchio dopo le modifiche, uno dei pochi apparecchi commerciali che vanno davvero bene, paragonabili a quelli che realizzo io normalmente, vediamo il grafico di banda passante (in giallo la banda passante e in azzurro la rotazione di fase):

Potenza massima erogata 40Watt RMS
Banda passante a 1watt: 20Hz -1db ~ 70kHz -3db
Smorzamento DF: 1,9

Spettro a 1watt (nell’immagine sono riportati i dati riguardo il THD e il livello delle varie armoniche)


Ricostruzione di un 3600 devastato

Prima che si sveglino i soliti personaggi che non hanno niente da fare se non tormentare il prossimo devo fare la premessa che la scelta se riavvolgere o rimpiazzare i trasformatori guasti di un’apparecchio dipende dal cliente e non da me, quindi per piacere astenetevi dai soliti sterili commenti che ho rovinato un’apparecchio. Faccio inoltre presente che i ricambi originali non sono più in produzione e che quelli che si trovano sono usati strappati via da altri apparecchi che quindi ne sono rimasti privi, per questo ha poco senso fare i conservatori se per riparare un’apparecchio ne devo guastare un’altro perchè ci sarà sempre un’amplificatore che rimane senza e piuttosto che buttarlo via vale la pena recuperarlo anche se non completamente originale. Oltre al collezionismo c’è anche a chi interessa ascoltare musica, e se suona bene non esiste motivo valido per non farlo. Che i trasformatori rotti rimasti non sono stati buttati via ma conservati per chi avesse voglia di spendere il necessario per riavvolgerli e infine che l’amplificatore non suona peggio e che i trasformatori di rimpiazzo sono di tutto rispetto sia strumentale che sonoro.

Questo povero MQ3600 era finito in mano a uno dei tanti non professori che lo aveva devastato per bene… Ovviamente e giustamente comprato a peso di ferro. Zoccoli e resistenze carbonizzare, trimmer da PCB, fili sfiammati, cavi dei trasformatori grossi come un dito, unto e olio… La prima cosa che ho fatto è stato rimuovere tutti i trasformatori per un lavaggio del telaio.

Poi ho tolto gli zoccoli bruciati e i trimmerini da circuito stampato che qualcuno pensava potessero essere adatti al lavoro… Da vedere l’apparecchio aveva subito diversi tentativi di riparazione prima che capissero di non essere capaci.

Ripulito il telaio ho collaudato i trasformatori: incredibilmente quello di alimentazione e l’induttanza erano sani, mentre purtroppo uno dei 2 d’uscita era in corto. Si è deciso di prendere la strada economica del rimpiazzo invece che quella del riavvolgimento. Ho quindi calcolato un trasformatore da 3600 ohm per pushpull di KT88 connesse a triodo. Ricordiamo che le 8045 originarie di questo luxman sono triodi e non pentodi in ultralineare. Quindi schema alla mano ho cominciato a ripristinare il circuito.

Potenza massima erogata 40Watt RMS
Banda passante a 1watt: 10Hz -0,8db ~ 60kHz -1db
Smorzamento DF: 3

THD

Banda passante su carico resistivo

E carico reattivo

Quadre a 100Hz / 1khz / 10khz

Continue reading...

6 risposte a Luxman MQ3600 – Riparazione e Trasformatori di Ricambio

  • Bravo Stefano, averne di tecnici di poche parole(perche’ tre son troppe e due son tante..) come te. L’apparecchio collegato ad un pre luxman C12 suona veramente bene e senza ronzii. Avanti cosi alla faccia dei conservatori e non degli ascoltatori.

  • Grande Stefano.
    Dalle foto e descrizione si evince che è un lavoro svolto con
    eccelsa professionalità e conoscenza.
    Anch’io ho un luxman MQ3600 con il suo pre cl 32.
    Non le nascondo che sarei tentato a farglieli revisionare anche se funzionano bene (almeno credo).

  • Gli ho portato circa due mesi orsono il finale in questione in condizioni pessime e sono andato a ritirarlo ieri. Debbo dire che è stato fatto un ottimo lavoro, la macchina suona veramente bene. Le valvole PSvane kt88 si dimostrano aperte ed armoniche e le tarature apportate, compreso il cambio dei trafo dovrebbero garantire lunga vita. Auguri e complimenti Stefano, continua così.

  • Complimenti per il lavoro e il dettagliato resoconto. Ho letto tutto con piacere perché il LUXMAN MQ3600 è stato per me il passaggio alla alta fedeltà e lo ricordo con piacere. Pilotava le mie prime Magneplanar, le MGIIA che purtroppo richiedevano una potenza maggiore, così che vendetti il Luxman per comprare una coppia di monofonici Michaelson & Austin M100.

  • Le modifiche suggerite da luxman si trovano cercando su internet.

  • Ciao, hai foto del circuito con le modifiche? Quali sono le modifiche esatte suggerite da Marantz?

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Luxman MQ70 – Riparazione

Un difetto tipico dei Luxman MQ70 sono i trasformatori d’uscita che vanno in corto, sopratutto se per errore vengono accesi e fatti suonare sconnessi dall’altoparlante, problema favorito per altro dai morsetti in dotazione che se si inserisce troppo dentro la guaina del filo a volte non fanno contatto. Il secondo difetto dei trasformatori d’uscita Luxman è di essere affogati in catrame. Il catrame è fortemente igroscopico (cioè assorbe amidità col tempo e tende a trattenerla) e se l’amplificatore viene conservato per lungo tempo in un luogo umido è possibile che i trasformatori si rovinino.

Un’altro problema dell’MQ70 è quello delle finali tirate per il collo: Riescono ad erogare 40watt RMS da una sola coppia di EL34, perchè la tensione anodica arriva a sfiorare i 500volt e a volte arrossano le placche perchè non si riesce ad abbassare la corrente di bias sotto i 50mA (o più di 50). Nella regolazione del bias si ha un leggero margine se la tensione di rete è 220 (testato col variac, il trasformatore di alimentazione dell’MQ70 è fatto per ricevere sul primario 220volt) il problema è che ai giorni nostri spesso la rete di distribuzione arriva a 230/240volt e l’aumento della tensione di placca delle finali fa schizzare la corrente di bias oltre il limite minimo regolabile dal circuito, questo secondo difetto è facilmente risolvibile cambiando una sola resistenza nel circuito, in questo modo si aumenta la tensione negativa disponibile sui trimmer del bias e si riesce a riavere un buon margine di regolazione. Consiglio a tutti di regolare una corrente di riposo di 30/35mA massimi, per tenere le finali un pelo al di sotto della dissipazione massima, non si ha nessuna perdita di potenza o qualità, le valvole vivono più a lungo e sono meno soggette a guasti esplosivi. PS in molti apparecchi la luxman sembra non aver montato le resistenze di testpoint riportate a schema sotto gli zoccoli delle finali, per comodità di non dover usare 4 bias prober io le metto.

Primo Caso: Riparazione di un esemplare con riavvolgimento dei trasformatori originali.

Mentre il primo difetto, ossia i trasformatori d’uscita che si bruciano è più antipatico. La disconnessioni del diffusore avviene principalmente per colpa le boccole a vite dove si mette il filo spellato che va alla cassa, queste boccole di plastica le trovo spesso rotte, quindi mollano il filo, il guasto del trasformatore avviene per auto oscillazione, perchè il circuito ha un tasso di feedback estremamente alto.

Il lavoro di ripristino del trasformatore di uscita è molto laborioso, perchè detto trasformatore è chiuso in una scatola metallica, affogato nel catrame e usa lamierini con dimensioni non standard, quindi non posso produrre semplicemente il ricambio ma devo ogni volta estrarre il blocco dal catrame e ripulirlo per recuperare lamierini e fascetta per poterlo riavvolgere.

Estrazione…

Trasformatore ripulito

Trasformatore riavvolto

Reinserimento nella scatola originale e riaffogato.

Rimontato il trasformatore riparato, provvedo a sostituire i morsetti a vite scassati con delle boccole adatte all’uso di capocorda, gli unici connettori con cui viene un bel lavoro.

Sistemato il problema del bias e cambianto il quartetto di EL34 (valvole che di solito trovo totalmente sfiaccate) l’amplificatore torna a funzionare come nuovo. Per gli scettici pubblico i 2 tracciati di banda passante e fase acquisiti dal canale con il trasformatore d’uscita ancora originale e quello riavvolto e faccio presente che il trasformatore viene riavvolto sugli stessi lamierini originali, con gli stessi materiali e con esattamente lo stesso schema di avvolgimento ottenuto per ingegneria inversa, sbobinando il primo che ho rifatto. Quindi la copia è uguale all’originale. Le minime differenze le si trova anche su coppie di trasformatori originali, il clone è perfetto.

Trasformatore Originale Trasformatore Riavvolto

Analizzando più a fondo i trasformatori originali Luxman, acquisendo il grafico di banda passante fino a 400khz si nota l’insorgere di una fortissima risonanza che viene probabilmente accentuata dall’immenso tasso di controreazione che viene applicato a questo circuito e che è sicuramente la causa della distruzione degli stessi trasformatori, con guasto delle finali, quando all’amplificatore manca il carico, ovviamente il trasformatore riavvolto ha lo stesso difetto. Non ho acquisito il grafico oltre i 400khz per motivi di sicurezza, non volevo guastare il trasformatore sotto test visto che a 400khz la risposta era già a +15dB. Faccio poi notare ai soliti personaggi pieni di pregiudizi che a orecchia non si nota nessuna differenza sonora tra i 2 trasformatori anche se uno è originale e l’altro è stato riavvolto, le differenze nei grafici sono insignificanti e non è possibile udire la differenza di 0,4dB a 10Hz in quanto si è nella gamma degli infrasuoni. La risposta in fase è la medesima e piccole differenze come questa le rileveresti anche tra 2 trasformatori originali, non importa avere belle casse, a orecchia non lo si sente. (E anche io ho delle Tannoy). Quindi chi ha pregiudizi e sentenzia che i miei lavori sono qualitativamente inferiori agli originali prima di parlare dovrebbe ascoltarli perchè scommetto che se non sapesse che c’è un trasformatore riparato non sentirebbe nulla di strano.


Secondo Caso: Riparazione più economica (ma migliorativa)

Questo è il caso di un MQ70 che mi è stato inviato da un negozio, l’amplificatore all’apertura del pacco emanava una puzza nauseabonda, un misto tra urina ed elettronica bruciata, all’ispezione visiva si presentava con simil granelli di sale cosparsi ovunque, io credo che sia stato tenuto appoggiato in terra in una cantina umidissima o che la detta cantina abbia subito un’allagamento, e che poi abbiamo provato a metterlo in funzione. Già un’altro tecnico aveva provato a ripararlo senza successo, quindi lo hanno inviato a me. Nelle foto sotto si possono vedere le incrostazioni da umidità che lo ricoprivano.

Vista la sporcizia e la puzza che faceva non c’erano molte alternative, ho dovuto smontare tutti i trasformatori e l’induttanza per procedere ad un lavaggio del telaio, nello smontare i trasformatori d’uscita ho trovato abbondante condensa sotto di essi (si vede bene nella foto ravvicinata):

Ho quindi fatto un test di isolamento sui trasformatori d’uscita ed emergeva che scaricavano tra primario e secondario superati i 700volt, quando in teoria la tenuta dovrebbe arrivare almeno a 2kV, segno che avevano assorbito umidità. Inizialmente ho provato a tenerli una settimana sul termosifone nella speranza che asciugassero ma la situazione non cambiava, inoltre c’era la seria possibilità che visto che l’amplificatore era stato acceso, internamente avessero già una bruciatura conduttiva tra gli isolanti. Non c’era speranza di recuperarli e siccome il riavvolgimento degli stessi originali come avete visto nella prima parte di questo articolo è veramente molto laboriosa e costosa il negoziante che me lo ha inviato per la riparazione mi ha chiesto quale poteva essere il piano B per non sforare il budget. Il piano B è quello di avvolgere 2 trasformatori di ricambio, ex novo, compatibili al circuito ma ovviamente non esteticamente uguali agli originali. Essendo il trasformatore originale avvolto su un nucleo con dimensioni non standard non è possibile usare lo stesso schema di avvolgimento, ma bisogna calcolare un trasformatore completamente nuovo, ero fiducioso di riuscire a fare un lavoro anche migliore dell’originale, inoltre non dovendo rinchiudere i trasformatori in una scatola avrei avuto a disposizione almeno il 30% in più di nucleo. Il piano B è stato confermato quindi sono andato avanti nel lavoro di riparazione, nella foto sotto il telaio bello pulito e profumato.

Ho dovuto fare qualche foro per ospitare i nuovi trasformatori d’uscita…

Il montaggio è andato bene, anche in questo esemplare bisogna aggiungere le resistenze da 10ohm che appaiono sullo schema ufficiale per poter regolare il bias…

Montaggio Finito…

Ho regolato il bias a 35mA per valvola e sorprendentemente la potenza RMS è aumentata dai 40Watt per canale che si hanno con i trasformatori originali a 56watt RMS, con i miei trasformatori il circuito appare stabile e non si mette ad auto oscillare in mancanza del carico. Il fattore di smorzamendo DF si attesta a 13… sono sincero è troppo retroazionato questo circuito, mi sono permesso di ritoccare il valore della resistenza di NFB per scendere ad un fattore di 8.

La banda passante 6watt è: 10hz 0dB @ 0,4° / 55khz -1dB @ 60° – banda passate e rotazione imposta più che altro dalla compensazione della rete di NFB, il trasformatore si estende quasi a 100khz. Il grafico poi è molto più pulito rispetto al grafico del trasformatore originale.

Distorsione armonica THD @ 1 watt su carico resistivo 0,17%

È impressionante invece il grafico su carico reattivo, frutto di un gran lavoro della luxman ma anche della tanta controreazione, resta comunque un’amplificatore valvolare concepito negli anni 80, in concorrenza con il mercato fiorente degli amplificatori a transistor di quell’epoca che puntavano tutto sulla strumentale. Sotto il grafico di risposta su carico reattivo a 6 watt.

Quadre a 100Hz / 1khz / 10khz

Ho ascoltato l’amplificatore è il suono resta quello luxman, non ho notato cambiamenti particolari, sopratutto in vece a recenti informazioni ricevute da persone a me vicine faccio notare ai puristi e collezionisti, ok i trasformatori in questo caso non sono più i suoi, se cercate un’apparecchio originale a scopo di collezionismo non è questo quello che fa al caso vostro, ma non potete dire che suoni peggio, in questo caso si diverso, più pulito e brillante quindi a detta di chi lo sta usando meglio che con i suoi originali e chi non lo ha sentito non può sentenziare un bel niente, le prove strumentali sono per altro evidenti. Inoltre ribadisco ancora, era un’apparecchio guasto che ora suona e fa felice qualcuno, diversamente sarebbe stato utilizzabile solo come rottame per recuperare parti di ricambio.

Continue reading...

5 risposte a Luxman MQ70 – Riparazione

  • Ho fatto riparare uno splendido MQ70 che bruciava le valvole di potenza e aveva un suono distorto. Il lavoro eseguito è stato perfetto. L’amplificatore ora è tornato ai suoi antichi splendori.

  • Ho riavuto pochi giorni fa il mio Luxman MQ 70, riparato dal Sig. Stefano.
    Trasformatori sostituiti ed altre cose sistemate.
    Il suono, simile a prima, ovviamente non è uguale, ma qui le sorprese: la prima gli acuti: più aperti senza essere fastidiosi.
    Ma è soprattutto la scena riprodotta a migliorare: più precisa, con strumenti maggiormente identificabili nello spazio e “fermi”.
    Meritava la riparazione insomma. Un grazie anche per l’assistenza ricevuta una volta restituitomi il finale

  • devo fare i complimenti al Sig Stefano. per competenza qulita del lavoro svolto e comunicazione.. un guro delle valvole conosce a fondo il tema, si percepisce perfettamente la passione per il suo lavoro…
    pieffe elettronica

  • La resistenza da 10ohm 1/4watt che sta come test point del bias fa lo stessa lavoro, se una valvola dovesse dar di matto si brucia la resistenzina. La cosa strana è che questa resistenza è riportata negli schemi ufficiali ma solo una volta le ho trovate montate di fabbrica (grosse per altro, che non bruciavano facilmente). In ogni modo quando non ci sono le aggiungo io.

  • Forse aggiungere un fuse adatto sul primario può prevenire la bruciatura del trasformatore d’uscita

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Smorzamento con Zero Feedback ? È Possibile ?

I precedenti articoli che ho pubblicato su questo argomento hanno smosso la curiosità di diversi utenti che mi hanno chiesto informazioni privatamente su questo argomento spinoso. Gli articoli a cui mi riferisco (che consiglio di leggere) sono  questi:

Cos’è il Fattore di smorzamento dell’amplificatore?

Negative Feedback e la caccia alle streghe

SB-Nibiru – Prototipo – Perchè non esiste solo la distorsione armonica

Riassumendo il punto della questione è che nonostante la stampa di settore e tutti i vari guru dell’alta fedeltà valvolare continuino imperterriti a spacciare il mito dell’amplificatore zero feedback come soluzione indispensabile per ottenere un buon suono la realtà che vedo è che moltissime persone sono scontente del suono dei loro apparecchi o degli apparecchi che vendono. I guru e la stampa di settore dell’alta fedeltà hanno demonizzato tutto quello che fa uso di controreazione spingendo i produttori a seguire la moda ma così facendo hanno ristretto le possibilità di scelta al punto che tanti abbandonano questo mondo totalmente, o passano allo stato solido perchè non sono più disposte a spendere soldi per apparecchi che trovano insoddisfacenti. Restringendo il mercato ad apparecchi ipercostosi spesso dalle doti discutibili e la clientela che lo frequentano a una nicchia di persone troppo spesso estremiste e talebane. E non è finita qui perchè questa follia dilangante comicia ad intaccare anche il mondo dello stato solido in quanto cominciano a spuntare qua e la anche amplificatori a transistor/FET zero feedback. I produttori sono accecati dai prezzi che sono disposti a pagare i clienti estremisti perdendo di vista i numeri ben più grandi del resto del pubblico.

Io ho già dimostrato nel mio piccolo che l’impiego di trasformatori di qualità molto elevata unitamente a un moderato e accurato uso della controreazione possa portare alla realizzazione di apparecchi dalle doti sonore uniche e che sono apprezzate in modo molto positivo anche dai quegli utenti che ascoltano musica da decenni e che fino ad oggi avevano snobbato certe soluzione tecniche in quanto demonizzate ovunque si leggesse di valvole, rimanendo essi, sorpresi da quello che si riesce ad ottenere facendo le cose nel modo giusto, ottenendo risultati impensabili o che molti per anni hanno agognato e ricercato nei loro valvolari (tutti zero feedback), cambiando valvole in modo compulsivo senza mai riuscire ad arrivare al risultato sperato. Ma i guru continuano la loro folle corsa verso il baratro, perdendo clienti dopo averli spennati, rovinando apparecchi, rovinando il mercato e la credibilità di tutta una categoria.

La domanda che mi è stata posta da un visitatore del sito è stata:

Ma con un budget elevato sarebbe possibile progettare e costruire per esempio un SE a triodi con nessuna retroazione, nè globale e nemmeno locale, e che funzioni sonicamente bene? Da abbinare a diffusori ad alta sensibilità e facili da pilotare?

Ci tengo a dirlo, perchè la domanda dimostra ancora una volta l’opera di proselitismo dei guru che dicono che se vuoi che suoni bene devi spendere tanto e il progetto sia fatto “bene”, però non si capisce come debba essere fatto questo progetto per essere fatto “bene” ma sopratutto più di una volta ho visto apparecchi venduti a svariate migliaia di € (e non necessariamente cinesi) avere talmente tanti problemi di funzionamento che dovevo dire al cliente che per farli suonare bene si sarebbe dovuto ricostruirli da zero buttando via tutto, trasformatori compresi… Perchè io sono sincero, altri “tecnici” da cui erano andati prima di me si limitavano a rubargli soldi vendendo valvole che dovevano risolvere chissà cosa ma che poi non risolvevano un bel niente, perchè se il circuito è sbagliato non c’è valvola che possa risolvere il malfunzionamento. Gli altri hanno guadagnato la vendita di una sporta di valvole al contrario di me che ho detto la verità e non ho guadagnato niente, ma alla lunga questi personaggi pagheranno la loro disonestà, o almeno si spera, perchè resta un nutrito gruppo di utenti che amano cambiare apparecchi e valvole in continuazione.

Quindi tornando alla domanda sopra io rispondo che basta fare un circuito ben fatto e con un uso corretto di controreazione per ottenere risultati ottimi, come ho spiegato negli articoli dei link sopra il più grosso problema dell’assenza di feedback in un’amplificatore sia il fattore di smorzamento molto basso e di tutti i problemi sonori che questo causa, sopratutto se si abbina l’amplificatore con diffusori che abbiano inerzie elevate (coni con diametro elevato) e/o dotati di reflex.

La domanda quindi è:

È possibile avere un fattore di smorzamento decentemente elevato su un finale valvolare senza usare controreazione?

Ho già accennato negli altri articoli che il fattore di smorzamento “naturale”, ossia lo smorzamento che il finale mostra anche privo di controreazione dipenda al 50% dal trasformatore d’uscita e al 50% dalla valvola finale, o meglio dalla “resistenza interna” di tale valvola. Le caratteristiche del trasformatore d’uscita sono comunque legate in buona parte da quelle della valvola quindi alla fine si può dire che se il trasformatore è una scelta quasi obbligata la responsabilità del risultato finale, quanto a smorzamento, dipenda nella maggiorparte dalla valvola, mentre non centra il driveraggio. Tutto dipende quindi solo ed unicamente dalla resistenza interna della valvola finale, dalle sua classe di funzionamento (classe A o AB) e dal rapporto di trasformazione del trasformatore.

Come è stato già detto in altri articoli il Damping Factor non è altro che un modo di assegnare un “punteggio” a quella che è la resistenza d’uscita di un circuito, o Rout, infatti il valore del DF si ottiene dalla Rout precedentemente calcolata tramite formula matematica: DF = L/Rout dove L è il valore del carico. Mentre la controreazione non è altro che un modo di abbassare la Rout di un circuito.

Nel caso di un’amplificatore valvolare, la teoria dice che se si vuole aumentare lo smorzamento senza usare controreazione è necessario adottare una valvola che abbia di per sè una resistenza interna molto bassa, ma quali valvole vanno bene e quali no? Genericamente posso dire che perchè il gioco dello smorzamento senza controreazione funzioni servono valvole con resistenze interne inferiori ai 200ohm, oppure parallelare valvole in modo da raggiungere una Ri combinata sufficientemente bassa, è sconsigliato il single ended parallelo perchè il trasformatore soffre la DC e ha maggiori dispersioni al contrario di una configurazione pushpull in classe A si rileva essere la soluzione migliore.

Quindi le valvole devono essere triodi o pseudo tali e la rosa delle scelte possibili si limita alle 6080 / 6AS7 / 6336 / 6C33 e le varie equivalenti di queste valvole che ho elencato… (chiunque conosca altre valvole con caratteristiche simili è pregato di segnalarle sotto nei commenti).

Tutte le altre valvole, anche le super conosciute e acclamate dal grande pubblico degli audiofili comprese le beneamate 2A3 / 300B / 845 / 211 hanno Ri troppo elevate e messe a zero feedback finiscono per dimostrare fattori di smorzamento bassissimi, mai oltre un fattore 2 o 3 (e chi dice di ottenere fattori di smorzamento elevati, zero feedback, con queste valvole racconta balle).

Calcolo dello smorzamento “teorico” Zero Feedback

Dato questo circuito teorico:

Abbiamo un trasformatore con un rapporto di trasformazione “n” formato da un’avvolgimento primario e un’avvolgimento secondario, entrambe gli avvolgimenti hanno una resistenza parassita RDC1 e RDC2. La resistenza RDC1 va considerata in serie alla Ri del triodo, mentre RDC2 va considerato in serie all’altoparlante. La Rout si calcola con questa formula:

((Ri+RDC1)/(n*n))+RDC2

Come si calcola il rapporto di trasformazione ?

Radice Quadrata di Inp.Pri/Inp.Sec

Dove le impedenze sia primarie che secondarie sono espresse in ohm.

Assumiamo che il triodo sia una sezione della 6336A con una resistenza interna di 330ohm, la RDC1 del trasformatore sia 80ohm, la RDC2 sia 0,3ohm l’impedenza primaria 3k e la secondaria 8ohm, quindi il rapporto di trasformazione è: 19,365:1

((330+80)/(19,365*19,365)) + 0,3 = 1,39ohm
Pari ad uno smorzamento DF di “L/Rout” ossia 8/1,39 = 5,7 (appena sufficente)

Cosa succede se modifichiamo il trasformatore per avere un secondario da 4ohm invece che da 8? Il rapporto di trasformazione diventa di 27,386:1 mentre RDC2 che prima era circa 0,3ohm diventerebbe circa 0,2 (non 0,15… attenzione che da 4 a 8ohm le spire non raddoppiano!) quindi la formula diventa:

((330+80)/(27,386*27,386)) + 0,2 = 0,746 (arrotondando i decimali)
Pari ad uno smorzamento DF di 4/0,746 =  5,36

Quindi lo smorzamento non cambia cambiando tra le varie prese del trasformatore d’uscita, la differenza tra i 2 calcoli è dovuta agli arrotondamenti questo a smentire qualche cialtrone che afferma che lo smorzamento sia diverso se si usa una cassa da 8ohm sulla presa a 8ohm piuttosto che una cassa a 4ohm sulla presa a 4.

Cosa succede se usiamo una famosissima e bellissima e tanto di moda 300B con Ri di 740 con il classico trasformatore da 3k Rapporto 19,365, RDC1 da 64ohm e RDC2 da 0,09ohm…

((740+64)/(19,365*19,365) + 0,09 = 2,234
DF 8/2,234 = 3,58 (insufficiente) 

Continuiamo a divertirci, qualcuno che non sa far conti nè misure vanta PSE con la 845 Ri con fattori di smorzamento dichiarati a 3 cifre sopra lo zero, la Ri delle 845 è di 1700omh diviso 2 perchè ci sono 2 valvole in parallelo 850ohm, trasformatore sempre da 3k ma molto più grosso di quello che si userebbe con una 300B per via delle potenze maggiori, quindi RDC maggiori… non devo starlo nemmeno a calcolare, è ovvio che lo smorzamento sarà molto più basso di 3,5…

Adesso che ho dimostrato che con le valvole fighette famose non si va da nessuna parte quanto a smorzamento zero feedback torniamo alla nostra 6336A, cosa succede se usassi un trasformatore da 5k primari invece che da 3k? Il rapporto di trasformazione è: 25:1 e diciamo una RDC1 di 100ohm (valore ipotetico).

((330+100)/(25*25)) + 0,3 = 0,988ohm
Pari ad uno smorzamento DF di “L/Rout” ossia 8/0,988 = 8,09 (fattore di smorzamento assolutamente ottimo)

Sembra di aver trovato il sacro graal ma purtroppo questi erano tutti calcoli teorici, che considerano un trasformatore ideale privo di perdite, quindi con un trasferimento di energia di 1 tra primario e secondario, purtroppo però nei trasformatori reali il trasferimento di energia è sempre inferiore a 1, quindi c’è un’ulteriore resistenza fantasma in serie al nostro circuito che potete immaginare interposta tra primario e secondario, nel dominio magnetico. L’energia elettrica che passa nel primario si trasforma in energia magnetica che si trasferisce al secondario trasformandosi di nuovo in energia elettrica, in questa tripla trasformazione di dominio (elettrico/magnetico/elettrico) purtroppo ci sono delle perdite inevitabilmente che si possono immaginare come un’ulteriore resistenza in serie al circuito.

Il secondo problema sta nel fatto che aumentando l’impedenza primaria del trasformatore la retta di carico vista dalla valvola si corica molto, quindi si ha una diminuzione drastica della potenza trasferita al carico, si potrebbe ovviare a questo problema spostando il punto di lavoro ad una tensione molto più alta, ma per loro natura valvole come le 6080/6336 etc non possono sopportare tensioni di placca molto elevate. Il datasheet della 6336A indica una tensione massima di 400volt ma nella voce “absolute values” il che significa che non è consigliabile farla lavora così in alto… ma deve essere il punto morto superiore dove cade la retta di carico, il punto a riposo sarà quindi molto più basso. Delle sciances in più si potrebbero avere con delle valvole di riga TV connesse a triodo che possono gestire tensioni molto più alte e quindi impedenze elevate ma hanno però anche Ri molto più elevate quindi è probabile che alla fine ci si trovi incatenati ad un’albero e non si possa andare molto in là in assenza di feedback… Proviamo a calcolare cosa uscirebbe con un SE di 845 su un trasformatore da 12k primari, rapporto 38,73, RDC1 217ohm, RDC2 0,22

((1700+217)/(38,73*38,73) + 0,22 = 1,498
DF 8/1,498 = 5,3

Come appare evidente si è sempre li attorno, e fidatevi che nessuno può infrangere le leggi della fisica se non forse Dio… e i ciarlatani truffatori che lo scrivono ma poi sono solo un sacco di balle. Voglio far notare inoltre che la RDC2 appare molto importante per il risultato finale, è quindi buona cosa che l’avvolgimento secondario abbia una resistenza DC la più bassa possibile pena la penalizzazione del fattore di smorzamento, è quindi buona pratica che tutti le sezioni del secondario siano possibilmente poste in parallelo tra loro andando contro a quanto affermato da altri personaggi che vanno affermando che le sezioni del secondario vadano poste in serie perchè poi la tensioni non sono uguali tra le varie sezioni e quindi fanno a pugni e distorcono blabla… se le avvolgi male con un numero di spire diverso sicuramente avrai problemi se no son solo paranoie come un’altro sacco di cose senza senso che si leggono negli scritti di queste persone.


Il dilemma del pushpull

E in pushpull come si calcola lo smorzamento? Questo argomento ha fatto scoppiare un guerra tra guru… Nel pushpull le 2 valvole sono da considerarsi in serie o in parallelo? I guru dicono in parallelo ma prutroppo si sbagliano. Nel pushpull il calcolo resta uguale ma la resistenza interna delle 2 valvola si somma, trascurando la resistenza degli avvolgimenti del trasformatore il circuito equivalente lo si può pensare fatto così:

Per misurare l’impedenza di uscita si devono cortocircuitare i due generatori equivalenti che simulano le due valvole (in pratica si azzera il segnale audio all’ingresso dell’ampli). L’impedenza di uscita è quella che si vede dall’uscita dell’ampli guardando dentro al secondario che è pari alla serie delle due resistenze interne delle valvole riportata al secondario e questo non perché le valvole operano in controfase ma perché il primario è fisicamente collegato in serie alle valvole.

Qualcuno potrebbe essere portato a pensare che in effetti il circuito da considerare sarebbe questo:

Potrebbe sembrare che il condensatore che compare nello schema possa cambiare le cose ma non è così: in un amplificatore push-pull in classe A le correnti di segnale nei due rami sono uguali e opposte, quindi nessuna corrente di segnale scorre nell’alimentatore. Del resto è risaputo che in un amplificatore push-pull in classe A la potenza fornita dall’alimentatore è costante e non dipende dall’ampiezza del segnale audio, proprio perché la corrente del segnale audio non scorre nell’alimentatore/condensatore.


Vediamo un’applicazione pratica

Un cliente mi ha chiesto l’avvolgimento di un trasformatore da 6kAA da usare con le 2 sezioni in pushpull di una 6336A polarizzate in classe A, proprio per fare esperimenti su questa teoria a cui anche io pensavo già da tempo e mi ha portato alla fine a scrivere questo articolo. Il trasformatore ha una RDC primaria di 196ohm mentre quella secondaria circa 0,7ohm.

((660+196)/(27,386*27,386) + 0,7 = 1,84
DF 8/1,84 = 4,34

Montato il circuito di prova a banco si ottiene una potenza superiore ai 10 watt con un DF effettivo di 4,0 dovuto ovviamente alle perdite del trasformatore non considerate nel calcolo teorico, la 6336 in questo tavolaccio è polarizzata con 90mA di bias per sezione, per una dissipazione di 40 watt complessivi su 60 possibili, aumentando leggermente la corrente di bias diminuisce la Ri della valvola e lo smorzamento aumenta ancora un pochino. Il cliente che ha ordinato questi trasformatori da 6k ha poi paragonato i risultati ottenuti con altri trasformatori costruiti da altri fornitori con una coppia di trasformatori da 7k:6ohm (rapporto di trasformazione 34,157:1) disadattati collegando un carico da 8 sulla presa a 6 causando una distorsione alle frequenze più basse in quanto l’induttanza primaria era insufficiente in tale condizione di disadattamento, ma solo per misurare il DF che si otteneva. Il trasformatore in questa situazione rifletteva sulla valvola un’impedenza di circa 9k e il DF misurato era di circa 8 ma con un calo drastico della potenza che si riduce a 6 watt.

Per voler verificare la situazione da lui simulata ho collegato sul mio trasformatore da 6k:8ohm (rapporto 27,386) un carico da 12ohm riflettendo sul primario un’impedenza di 9k ottenendo anche io un DF di 8 nonostante il rapporto di trasformazione del mio trasformatore fosse inferiore a quello dell’altro trasformatore 7k:6ohm (rapporto 34,157), il che indica che con tutta probabilità se avessi realizzato un trasformatore da 9k:8ohm (rapporto 33,541) avrei sostanzialmente avuto gli stessi risultati (o migliori) ma senza compromettere la basse frequenze.

La mia conclusione è che è sostanzialmente non è vantaggioso, ricercare smorzamenti elevati con circuiti valvolari zero feedback, perchè ci si riduce ad avere rendimenti in termini di potenza molto bassi, basti pensare che la 6336A dissipa 60 watt, diventando calda come il sole, per erogane appena 6 watt in altoparlante, poco meno di quello che può darti una comune EL34 che arriva a 7 in single ended. E che la qualità di questi 6 watt con uno smorzamento di 8 non differisce dalla qualità di altri 6 watt con lo stesso smorzamento ottenuti per mezzo di feedback fatto bene. Poi bisogna tenere in considerazione che in una classe AB appena accennata potrebbe già arogarne 15 e con un pelo di NFB avere tranquillamente uno smorzamento anche di 8 o 10.

So che tante persone vogliono continuare a negare le realtà e a credere che senza feedback suoni meglio. Però è innegabile che con queste valvole si possono ottenere smorzamenti decenti usando tassi di controreazione inferiore a quelli che sarebbero necessari con altre e per questo dovrebbero essere prese in considerazione come “interessanti” dagli autocostruttori.

Continue reading...

2 risposte a Smorzamento con Zero Feedback ? È Possibile ?

  • Ho letto con attenzione , devo ammettere di dare ragione a colui che ha scritto quanto sopra letto , sono un modesto auto costruttore che si interessa di alta fedeltà da più di 30 anni . Non ho mai peccato di presunzione affermando che quello che ho costruito sia il non plus ultra , la panacea ai problemi di ascolto o che essa sia superiore a tutte le apparecchiature dedicate all’hifi . Ce ne sono parecchi privati e non ( che hanno aziende nel settore , che modificano , cambiano , dicono , ecco soprattutto dicono ) i quali hanno la presunzione di essere o avere capacità intellettive al di sopra della media e ciò avvale la loro “capacità” di realizzare qualcosa di “straordinario” . Purtroppo “l’audiota” crede in queste persone , anzi ha la capacità di cercarsele col lanternino…………..
    Toccando con mano , con orecchio e verificando di persona e dopo tanto ripensare ( vari anni ) , ripeto , devo dare ragione al Sig. Bianchini Stefano sulle sue tesi . Inoltre faccio presente che NON SONO a libro paga del Bianchini , non ho nessun interesse , il mio interesse si è fatto più coerente verso ciò che realizza ,scrive ecc…, soprattutto i progetti, i trasformatori , devo dire un eccellente tecnico , non come tanti che si spacciano per tali e guarda caso l’audiota se li trova tutti sulla sua strada , prendendo sonore bastonate . Come in tutte le cose ci vuole un pizzico di umilta ammettere i propri limiti, chiedere consiglio a chi ne sa di più, veramente però, non il primo trovato a caso . Mi accingerò a realizzare un paio di progetti del Bianchini , due amplificatori , usando i suoi trasformatori , meditate gente . Tenete presente che ho in casa trasformatori di ogni specie, segnale , alimentazione ecc….. ma leggendo e studiando sul sito del Bianchini da tempo e facendo qualche misura , mi sono accorto che la verità è un’altra. Non è stato facile digerire la cosa , però se si vuole raggiungere un certo risultato bisogna tenere presente quanto dice il Bianchini . La scelta è libera ed ognuno ascolta ciò che vuole ascoltare . Un cordiale saluto a tutti .

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.