Ottimizzare il circuito con trasformatori SB-LAB

In questo articolo analizziamo in dettaglio la revisione di un classico schema ispirato Leak, realizzato da un appassionato utilizzando trasformatori SB-LAB. Vedremo come, partendo da un progetto vintage non ottimizzato, sia stato possibile ottenere prestazioni nettamente superiori attraverso un’attenta messa a punto e modifiche mirate.

L’obiettivo è dimostrare quanto sia importante adattare uno schema alle caratteristiche reali dei componenti utilizzati, soprattutto quando si vogliono sfruttare al massimo trasformatori di alta qualità.

Potrebbe interessarti anche il progetto dello stesso amplificatore ma con diodi invece che valvola raddrizzatrice? clicca qui…

Il caso: Hashimoto KT88 UL Push Pull Riprogettati

Era il 2017 quando pubblicai, nella sezione I lavori dei lettori, un breve articolo dedicato alla realizzazione di un cliente che aveva acquistato un set di trasformatori da me. Il titolo di quell’articolo era “Monofonici KT88 di Fabrizio”. Qui sotto, separata dalle linee, potete trovare la pagina originale.


Pubblico le foto dei monofonici realizzati da fabrizio con i trasformatori SB-LAB

Ciao Stefano come promesso ti invio le immagini ed alcuni dati tecnici dei due monofonici costruiti sulla base dei trasformatori comperati da te. Le misure non sono forse da campionato come quelle dei tuoi stupendi Allbireo, comunque sono apparecchi stabili e davvero ben suonanti. Poteva essere sfruttato meglio il tuo TU ? Sicuramente si, ma le scelte circuitali adottate e la messa a punto effettuata in seguito hanno portato a questo:

Le valvole usate sono: una EF86 in ingresso, alla quale segue in accoppiamento diretto la sfasatrice 12AU7, il circuito sfasatore utilizzato: un long tail pair, finali KT88. Nella sezione di alimentazione  è stata usata inizialmente una 54UG sostituita poi nella versione finale da una GZ 34.

Dati Tecnici misurati a 50watt RMS (potenza ottimale):
Alimentazione 460Vcc – BIAS 50mA
Distorsione armonica : 1Khz-50W  0,22%
Distorsione armonica : 60hz-50W  0,8%
Distorsione armonica : 10Khz-50W  1,2%

Banda Passante 50w:
+0,5db a 20Hz
-3db a 50KHz
NFB : 15db

Sensibilità d’ingresso: 0,5V 1Khz
Impedenza d’ingresso: 100Kohm
Rapporto segnale rumore: 102db


Poi nel 2020 ricevo questa email:

Ciao Stefano sono ***, posseggo due mono PP KT88 costruiti usando i tuoi TU, TA e Induttanze. Il lavoro è stato pubblicato nella rubrica “i lavori dei lettori” nel tuo sito con il titolo “Monofonici kt88 di Fabrizio”.

Vengo al dunque, al tempo quando ti inviai le foto e lo schema elettrico dei monofonici tu molto gentilmente mi suggeristi tramite email una serie di valide e possibili modifiche da mettere in pratica sul circuito per ottenere un miglioramento delle misure e delle qualità sonore degli amplificatori. Siccome io non mi ritengo un tecnico ma riesco ad apprezzare (molto) le tue argomentazioni tecniche e il tuo modo di concepire l’hi-fi, se accetti di darmi istruzioni mi piacerebbe modificare i due monofonici secondo le tue indicazioni.

Potrei anche accontentarmi di come suonano attualmente: molto ricchi, abbastanza dettagliati, pieni di bassi e “caldi” anche troppo “caldi e pastosi” per i miei gusti. Visto che mi piacciono le cose ottimizzate al meglio e considerato che ci sono margini di miglioramento vorrei attuare le modifiche da te consigliate o quelle che riterrai più opportune apportare.

Ho già trattato in passato il tema della banda passante di un trasformatore, ma da tempo avevo in mente di affrontare anche la banda passante di un intero circuito. Si tratta di un argomento piuttosto complesso, che merita di essere spiegato con esempi concreti e dati strumentali, così da renderlo più chiaro a chi legge.

Il caso tipico è quando si prende uno schema trovato su internet e lo si realizza utilizzando i miei trasformatori — oppure qualsiasi altro trasformatore diverso da quello per cui lo schema è stato progettato e messo a punto. In questi casi, non si può evitare di modificare qualcosa: uno schema elettrico reperito online DEVE sempre essere adattato al momento della realizzazione, a meno che non si utilizzino esattamente gli stessi trasformatori previsti dal progetto originale.

Per approfondire meglio la questione, prendiamo come esempio i monofonici di Fabrizio. Qui sotto trovate lo schema (di cui sconsiglio la realizzazione), con evidenziati in rosso i quattro punti più problematici.

Questo schema in realtà deriva a sua volta da uno schema hashimoto di cui potete trovare l’articolo completo a questo indirizzo…

Neppure lo schema Hashimoto è davvero originale: deriva infatti da uno schema ancora più antico, risalente alla fine degli anni ’50, utilizzato nei famosi amplificatori Leak. Nell’immagine qui sotto potete vedere lo schema del Leak TL25, dal quale emergono molte somiglianze.

Tutti gli schemi Leak di quell’epoca seguivano un’impostazione di base molto simile: variavano principalmente le valvole finali e la tipologia di sfasatore, mentre la EF86 era sempre presente. In sostanza, erano tutti abbastanza simili tra loro. Non saprei dire con precisione da quale modello Leak Hashimoto abbia preso ispirazione, ma il riferimento storico è piuttosto evidente.

Passiamo ora al problema che si è presentato a Fabrizio. Lui cercava un suono moderno: frizzante, brillante, arioso e pulito. Aveva visto nei miei trasformatori la chiave per raggiungere questo obiettivo, ma quando ha montato il suo clone Leak si è ritrovato con un amplificatore caldissimo, impastato e dal suono tipicamente “anni ’50”.

Nel mondo degli autocostruttori continua a resistere la convinzione che un singolo componente possa determinare da solo il risultato sonoro finale. Così si sente dire che “la valvola X suona in un certo modo”, “la valvola Y suona in un altro”, e lo stesso vale per trasformatori, condensatori, resistenze…

Un ragionamento che sfiora quasi la magia: come se bastasse inserire un solo elemento per imprimere all’intero amplificatore una certa personalità sonora. È un po’ come pensare che, montando un volante Ferrari su una Panda, questa diventi improvvisamente una supercar. Capito il concetto?

Come sempre, la realtà è molto più complessa degli stereotipi che le persone si creano nel proprio immaginario. Il risultato sonoro di un amplificatore dipende dall’insieme di tutti i componenti utilizzati e, soprattutto, da come questi vengono fatti lavorare insieme.

C’è chi afferma che le KT88 abbiano un suono pastoso e bassi gonfi, mentre le 300B sarebbero brillanti, ariose e dotate di un “palcoscenico” immenso… e via con tutta una serie di luoghi comuni.

La verità? Io stesso ho fatto suonare KT88 (e persino valvole TV economiche) in modo brillante, aperto e con bassi controllati. Allo stesso tempo, ho ascoltato molti amplificatori con 300B che suonavano chiusi, mosci e del tutto inascoltabili. “Eh, ma ci sono le 300B!” — E allora? Se il circuito è progettato male e costruito peggio, farà schifo lo stesso, anche se ci metti due valvole da 1.800 € l’una.

Tornando al progetto di Fabrizio, la causa principale del risultato sonoro che ha ottenuto è stata l’adozione di uno schema degli anni ’50, utilizzato senza le opportune modifiche. Infatti, il suono finale non dipende solo dalla valvola o dal trasformatore, ma dal complesso di tutti i componenti e, soprattutto, dallo schema elettrico su cui si basa l’amplificatore. A questo punto, riprendiamo lo schema elettrico in questione e analizziamo insieme quelli che io considero i principali problemi…

In che modo progettava Leak nel 1958? Beh, prima disegnavano lo schema teorico del circuito, poi producevano i trasformatori, montavano il prototipo e infine lo provavano. Molti autocostruttori sono convinti che tutto finisca lì: monti i primi componenti che ti capitano e il gioco è fatto (e purtroppo molti fanno davvero così).

In realtà, dopo aver assemblato un prototipo, chi sa davvero cosa sta facendo passa alla fase di messa a punto. E la messa a punto non consiste certo nell’aggiungere cavi da 5.000 €, pietre magiche o piedini conici rigorosamente in numero dispari.

Significa invece effettuare misurazioni strumentali dettagliate, analizzare il comportamento reale del circuito e, di conseguenza, apportare le modifiche necessarie allo schema per ottimizzare le prestazioni o correggere eventuali difetti.

Dobbiamo anche partire da un dato di fatto: il trasformatore di uscita Leak del 1958 non era niente di speciale. Mi dispiace per i nostalgici degli amplificatori vintage, ma è la realtà. All’epoca si utilizzavano lamierini di qualità inferiore persino rispetto a quelli impiegati oggi per i normali trasformatori di alimentazione, e non c’era alcun interesse a spingersi verso prestazioni superiori.

I trasformatori d’epoca erano carenti sia in basso che in alto: in pratica, erano quasi tutti centrati sui medi. Questo perché anche le registrazioni dell’epoca avevano pochi bassi e pochi alti, quindi i produttori di amplificatori non si preoccupavano di realizzare apparecchi con una banda passante estesa.

Anzi, all’epoca una banda troppo ampia sarebbe potuta diventare un problema, perché avrebbe messo in evidenza sul diffusore i rumble dei motori dei giradischi e i soffi vari causati da componenti rumorosi come i resistori a impasto, i cablaggi primitivi e così via.

Per chi ama questi vecchi amplificatori: non è una critica. Se vi piace quel suono medioso e vintage, va benissimo. Ma qui stiamo parlando di realizzare nel 2020 un amplificatore valvolare con un suono moderno, trasparente e dettagliato. Ci tenevo a chiarirlo per non attirarmi le critiche degli appassionati dei Leak: si tratta di apparecchi vintage dal suono vintage, ed è giusto apprezzarli per ciò che sono.

Tornando al nostro progettista Leak: una volta acceso il prototipo, posso ipotizzare che abbia incontrato problemi di auto-oscillazione, inneschi o captazione di disturbi RF. Per risolvere, ha inserito uno snubber (20 k? + 47 pF) in parallelo alla resistenza da 100 k? sull’anodo della EF86 (rettangolo rosa in alto a sinistra). Questo snubber era stato pensato per sopprimere un disturbo individuato a circa 169 kHz.

Fabrizio, non avendo la resistenza da 20 k?, ne ha utilizzata una da 22 k?. Uguale? No, perché 22 k? con 47 pF taglia a circa 154 kHz, quindi non è affatto la stessa cosa.

Ma c’è un punto ancora più importante: che senso ha mantenere questo snubber se né il trasformatore d’uscita né il cablaggio sono quelli originali Leak? Il disturbo che aveva risolto Leak potrebbe non esistere nel montaggio di Fabrizio, oppure potrebbe manifestarsi a frequenze diverse che richiederebbero prima di essere individuate, e poi eventualmente soppresse con valori corretti di resistenza e condensatore.

Ecco quindi il primo esempio di elemento che non può essere semplicemente copiato “as is”. In una replica moderna, il circuito andrebbe inizialmente montato senza questo snubber, per poi valutare in fase di messa a punto se reintrodurlo e con quali valori, in base a misurazioni reali.

Proseguiamo analizzando i cerchietti rosa: l’accoppiamento tra il driver ECC82 e le finali avviene tramite condensatori da 47 nF, con una resistenza di griglia di 100 k?. Per chi non lo sapesse, questa combinazione forma un filtro passa-alto con frequenza di taglio a circa 33 Hz. Apparentemente può sembrare accettabile, ma in realtà un taglio così elevato introduce rotazioni di fase alle basse frequenze (come vedremo più avanti nei grafici). Anche in questo caso, probabilmente alla Leak importava poco, visto che i trasformatori d’uscita dell’epoca spesso iniziavano a tagliare già ben prima, talvolta attorno ai 200 Hz.

Infine, analizziamo il rettangolo in basso a sinistra: si tratta del condensatore da 100 pF posto in parallelo alla resistenza da 33 k? nel percorso di negative feedback.

Questo condensatore viene utilizzato principalmente per sopprimere il ringing del trasformatore (visibile, ad esempio, in risposta a onde quadre), per limitare la banda passante dell’amplificatore quando è eccessiva o per ridurre eventuali instabilità.

Il suo valore è strettamente legato al trasformatore di uscita utilizzato: cambiando trasformatore, occorre necessariamente ricalcolare e modificare anche il valore di questo condensatore. Anzi, in alcuni casi, un condensatore che in un certo contesto sopprime un innesco, con un altro trasformatore potrebbe addirittura causarlo.

Questo componente è piuttosto comune negli schemi con controreazione, ma non può essere considerato un valore “fisso”: va sempre adattato in base al trasformatore e, talvolta, anche solo cambiando la disposizione del cablaggio.

Per questo motivo, quando si assembla un nuovo circuito, questo condensatore dovrebbe inizialmente essere omesso e il suo valore definito solo dopo accurate prove.

Personalmente, per semplificare questa fase, ho realizzato uno strumentino dedicato molto comodo.

Nel caso specifico, Fabrizio ha utilizzato un valore di 100 pF, mentre nello schema Hashimoto non era previsto nulla; immagino quindi che qualche prova l’abbia comunque effettuata. Vediamo il grafico di banda passante a 1 watt su carico resistivo:

Possiamo osservare un’attenuazione di circa –0,4 dB a 20 Hz e di –1 dB poco prima dei 20 kHz, intorno ai 18/19 kHz. Ciò che però ci interessa maggiormente è l’andamento della fase (linea azzurra): da 20 Hz a 1 kHz si registra una rotazione di circa 24°, mentre da 1 kHz a 10 kHz si aggiungono altri 36°. Per rendere più evidente questo fenomeno, utilizzo un’onda triangolare a 10 kHz, che permette di visualizzare in modo chiaro l’effetto della rotazione di fase sul segnale.

In giallo è visibile il segnale del generatore, mentre in azzurro quello in uscita dall’amplificatore. Si nota chiaramente come il segnale di uscita risulti anticipato rispetto a quello di ingresso, con un evidente arrotondamento delle punte, segno di una bassa velocità di salita (slew rate) dovuta alla banda passante limitata. Utilizzando un segnale sinusoidale a 14 kHz — scelto perché in quel punto la deformazione è particolarmente evidente a occhio nudo — si può osservare come la forma d’onda venga ulteriormente distorta a causa dell’azione della controreazione (negative feedback).

Anche qui, in giallo vediamo il segnale del generatore, mentre in azzurro quello in uscita dall’amplificatore. Oltre a risultare spostato in avanti, il segnale in uscita appare chiaramente distorto. Questa distorsione è causata dalla combinazione di una rotazione di fase eccessiva e di un livello di negative feedback altrettanto eccessivo.

Ci tengo a sottolineare ancora una volta, per chi si trovasse a leggere questo articolo, che sono un fermo sostenitore dell’uso del negative feedback — ma solo se impiegato in modo corretto. A questo proposito, vi invito a seguire questo link per approfondire l’articolo che ho dedicato al tema.

Il negative feedback va utilizzato, ma nelle giuste condizioni. Non ci si può aspettare che basti applicarlo per far “suonare bene” qualsiasi circuito, anche il peggio progettato. Al contrario, un circuito deve essere studiato per dare il massimo già senza feedback; solo in quel momento si può introdurre la giusta quantità di controreazione per ottenere i miglioramenti desiderati, come un corretto smorzamento.

Come ho scritto anche nell’altro articolo, il peggior nemico del negative feedback è la rotazione di fase (oltre, ovviamente, all’ignoranza di chi non sa usarlo o non vuole imparare). Nell’esempio della sinusoide qui sopra, si vede chiaramente come la combinazione rotazione di fase + negative feedback possa creare disastri. A occhio, la distorsione si nota già a 14 kHz, ma all’ascolto le conseguenze negative si percepiscono molto prima. Vediamo ora l’analisi spettrale a 1 kHz, 1 watt:

THD: 0,43%, con varie “sporcature” alle alte frequenze — misurato a 1 watt e 1 kHz. Proseguendo: il problema principale di questo amplificatore è che si è voluto utilizzare un trasformatore d’uscita a banda passante estesa, ma abbinato a un circuito che non è in grado di sfruttarlo correttamente.

Lo stesso Hashimoto, ad esempio, sul proprio sito pubblicizza trasformatori con banda passante fino a 100 kHz, ma poi ne suggerisce l’uso in schemi arcaici non aggiornati… a questo punto tanto varrebbe avvolgere un trasformatore qualsiasi, usando i lamierini più economici disponibili e senza alcuna cura nell’avvolgimento. Eppure, sistemare uno schema di questo tipo per adattarlo a un suono più moderno non è affatto impossibile. Allora perché non farlo?

Il problema principale dello schema Leak — oltre allo snubber — è proprio l’uso della EF86. Innanzitutto, la griglia schermo di questa valvola dovrebbe essere alimentata con una tensione più stabile, non semplicemente tramite una resistenza da 1 M?. Inoltre, la EF86 presenta un’alta impedenza d’uscita, e non mi convince l’effetto di “rallentamento” che può derivare dall’interazione con le capacità parassite del cablaggio (anche se, devo ammettere, in passato l’ho fatto anch’io in alcune occasioni).

Non mi piace particolarmente neanche l’uso della controreazione (NFB) sul catodo di un pentodo. Quando si modula il catodo di un pentodo, infatti, non si va solo a sottrarre segnale dalla griglia di controllo (G1), ma si introduce anche un’influenza legata alla griglia schermo (G2).

Ricordo che la corrente anodica dipende non solo dal rapporto di tensione tra catodo e G1, ma anche dal rapporto catodo G2. L’idea alla base della NFB è sottrarre il segnale rispetto a G1, ma modulando il catodo si muove anche il riferimento rispetto a G2, cosa che, almeno personalmente, preferisco evitare (forse è una mia “fissazione”, ma tant’è).

Inoltre, non era necessario uno stadio con un guadagno così elevato, perché avrebbe obbligato a un uso massiccio di controreazione per evitare di avere un ingresso eccessivamente sensibile. La mia filosofia è applicare solo il minimo NFB indispensabile per ottenere lo smorzamento desiderato. Vediamo comunque, perché è interessante, il grafico di banda passante dello stadio EF86 utilizzato nello schema Hashimoto, isolato dal resto del circuito:

La banda passante naturale (senza controreazione) dello stadio con EF86, completo di snubber, mostra un taglio a –3 dB già a 4,5 kHz, con una rotazione di fase di 40° a 3 kHz. Un risultato del genere rende questo stadio assolutamente inadeguato! Se già da solo si comporta così, significa che tutta la banda passante dell’amplificatore Hashimoto originale (pur limitata a 18 kHz) è ottenuta “a forza” grazie a un uso massiccio di negative feedback.

Al contrario, la mia filosofia è che un circuito debba funzionare bene di suo, già senza feedback. Il negative feedback dovrebbe essere solo un aiuto finale per ottimizzare lo smorzamento e rifinire la risposta, non il mezzo principale per “correggere” un circuito sbilanciato.

La modifica più semplice ed efficace è intervenire sullo stadio di ingresso. La EF86, collegata a triodo, offre ottime caratteristiche. Qui sotto riporto le curve relative alla configurazione in triodo, dove sia la griglia schermo (G2) sia la griglia soppressora (G3) vengono collegate all’anodo.

Molti non lo sanno, ma quando la G3 non è internamente collegata al catodo e dispone di un piedino dedicato, è preferibile collegarla anch’essa all’anodo quando si utilizza la valvola come triodo. Questo accorgimento riduce la rumorosità e abbassa la resistenza interna del triodo risultante.

Infatti, analizzando le curve con la G3 connessa al catodo, si nota una leggera riduzione della pendenza, mentre collegandola all’anodo si ottiene un comportamento migliore e più stabile.

Ho quindi sostituito tutte le resistenze attorno alla EF86, compresa quella di alimentazione, la resistenza di controreazione (NFB) e il relativo condensatore di compensazione.

Ho modificato il valore di una delle due resistenze di carico della ECC82 per bilanciare correttamente lo sfasatore, che altrimenti sarebbe risultato leggermente sbilanciato se si fossero utilizzate due resistenze identiche. Ho inoltre variato i valori dei condensatori di disaccoppiamento tra ECC82 e KT88, così come le resistenze di griglia delle finali.

Suggerisco l’uso di un elettrolitico di alta qualità e con capacità generosa per il bypass del catodo della EF86 collegata a triodo, eventualmente abbinato in parallelo a un piccolo condensatore in polipropilene per migliorarne ulteriormente la risposta (Fabrizio, invece, aveva utilizzato un condensatore economico e poco performante).

Per il disaccoppiamento tra ECC82 e KT88, consiglio condensatori in polipropilene di ottima qualità, come i Mundorf Supreme Classic. Nella versione modificata realizzata da Fabrizio sono stati montati degli eccellenti Arcotronics NOS.

Infine, è importante bypassare anche il secondo elettrolitico della cella CLC dell’alimentazione anodica con un polipropilene di buona qualità: questo accorgimento consente di ottenere un suono più chiaro e definito. Un semplice elettrolitico economico, infatti, tende a penalizzare la gamma alta a causa del suo elevato ESR e del fattore di dissipazione (D). Nel montaggio di Fabrizio si può notare un Mundorf Supreme Classic utilizzato proprio a questo scopo.

Ecco lo schema premium qui sotto, si ricorda che per vederlo dovete acquistare il set di trasformatori SB-LAB

Il montaggio modificato di fabrizio:

Vediamo ora quanto il circuito sia migliorato, almeno dal punto di vista strumentale, rispetto alla configurazione originale. Partiamo dall’analisi della banda passante:

–0,2 dB a 20 Hz e –1 dB a 90 kHz. Non ho voluto sopprimere la leggera “gobba” a 65 kHz, in quanto si trova ben fuori dalla gamma udibile: ho preferito preservare la massima velocità del circuito.

Oltre alla risposta in frequenza, anche la risposta in fase è migliorata drasticamente: solo 12° di rotazione tra 20 Hz e 1 kHz, e appena 8° tra 1 kHz e 20 kHz. Rispetto alla configurazione originale, la differenza è abissale. Finalmente il trasformatore SB-LAB viene sfruttato appieno! Vediamo ora anche la forma d’onda triangolare a 10 kHz…

Lo sfasamento è minimo, e anche le punte risultano molto meno arrotondate rispetto alla versione originale. E la sinusoide a 14 kHz? Vediamola subito!

Anche questa, finalmente, appare come una vera sinusoide, senza deformazioni né “ammaccature”! E l’analisi spettrale a 1 watt? Vediamo come si comporta rispetto alla situazione iniziale…

THD allo 0,11%. Molti, passando sulle mie pagine, sostengono che sia impossibile ottenere tassi di distorsione così bassi con un amplificatore valvolare. E invece sì, rassegnatevi: è assolutamente vero (e con una minore quantità di controreazione rispetto lo schema originale). Io sono in grado di farlo, perché i miei trasformatori non sono come quelli che trovate comunemente in commercio. Valgono ogni euro che costano (anzi, a dire il vero, costano pure poco considerando le prestazioni che offrono). Questi grafici non sono taroccati, sono frutto di misure reali e verificabili! Vediamo ora anche l’analisi spettrale a 25 watt:

Lo schema revisionato, a 25 watt, mostra una distorsione persino inferiore rispetto alla vecchia versione misurata a 1 watt! Infine, diamo un’occhiata al grafico di banda passante sul carico reattivo: lo smorzamento del circuito si attesta su un fattore di 5,7, un valore assolutamente ottimo. La potenza è passata da 50 watt a ben 65 watt RMS, prima del clipping.

Il set completo per realizzare due monofonici con lo schema da me ottimizzato comprende: 2 trasformatori d’uscita, 2 trasformatori di alimentazione, 2 induttanze di filtro e lo schema elettrico in versione leggibile e aggiornata. Se siete interessati, contattatemi tramite questo form per ricevere una quotazione aggiornata.

La conclusione di questo articolo è chiara: quando prendete uno schema trovato su internet — sia esso di un apparecchio d’epoca o progettato da altri — e decidete di costruirlo, dovete sempre concentrarvi sulla messa a punto. È fondamentale modificare questi schemi per adattarli alla situazione reale e, soprattutto, ai trasformatori che avete scelto di utilizzare. Questo vale in particolare per gli schemi vintage: se non lo fate, rischiate di ottenere risultati inferiori alle aspettative e, in certi casi, di non sfruttare appieno le potenzialità dei vostri trasformatori (specialmente se di alta qualità), finendo addirittura per giudicarli ingiustamente.

Ho avuto la fortuna che Fabrizio, in questo caso, sia stato intelligente e mi abbia contattato per capire cosa stesse succedendo. Io stesso sono solito parlare apertamente delle prestazioni dei miei trasformatori, ma se montati in un circuito non ottimizzato, i risultati non possono essere all’altezza delle specifiche dichiarate.

Purtroppo, altre persone, meno attente, nella stessa situazione potrebbero arrivare alla conclusione sbagliata: pensare che i miei trasformatori — pur essendo più costosi e pesanti — non vadano meglio di certa ferraglia da 50 €, quando in realtà il problema è nel circuito.

Questo articolo dimostra che i miei trasformatori offrono prestazioni comparabili a prodotti giapponesi di altissimo livello. Molta della “roba” economica che si trova online ha successo solo perché, per mancanza di conoscenze, molti non sono in grado di apprezzare la qualità reale.

Se vi trovate tra le mani trasformatori di alto livello, dovete anche essere in grado di sfruttarli al meglio. Per questo motivo, io resto sempre disponibile ad aiutare i miei clienti a ottenere il massimo dalle loro realizzazioni.

Il commento di Fabrizio (in originale a fondo articolo nella zona commenti):

Finalmente il suono che mi piace! Prolungare l’ascolto soffermandosi con il sorriso sulle labbra a godere della qualità del suono riprodotto ed avere la conferma di aver speso bene il denaro investendo su un set di trasformatori audio SB-LAB è quanto mi sta capitando questi giorni. Non c’è bisogno di bluffare con se stessi per rendersi conto di essere di fronte ad una apparecchiatura audio di alta qualità, perchè di alta qualità è il suo circuito.
Grazie Stefano.
Avevo nel cassetto due quartetti di valvole KT88 Mullard e G.E.C. selezionati, delle EF86 Telefunken silver shield NOS, così ho deciso di sostituire le già ottime EF86 Teonex (Watford Valves) con le Telefunken e le Genalex Gold Lion di recente produzione russa con il quartetto G.E.C. del 1960, prima le une poi a seguire le altre mentre ho lasciato le sfasatrici 12AU7 RCA clear top (le mie ecc82 preferite) e le raddrizzatrici Philips Miniwatt GZ34 (Mullard).
Non avevo mai provato questi cambi prima ma…si, data la bontà degli amplificatori modificati, ho ritenuto il caso di fare queste prove anche mosso da una certa curiosità.
Chi legge potrebbe aspettarsi che io ora scriva che si è notato subito un miglioramento montando sul nuovo circuito queste rinomate e costose valvole, bene mi dispiace per chi rimarrà deluso dalla mia affermazione ma non è così.
Gli amplificatori suonavano tremendamente bene prima con le russe e continuano a suonare strepitosamente bene anche con le kt88 G.E.C.
Nessun cambiamento udibile che possa essere considerato migliorativo e questa è la chiara conferma che una valvola di pregio non può da sola migliorare più di tanto un ottimo circuito come del resto non può da sola modificare le sorti sonore di un circuito mal concepito.
Nel caso degli amplificatori in oggetto invece possiamo davvero “solo” (vi paresse poco!) notare i cambiamenti nel suono che vengono inevitabilmente indotti dalle caratteristiche intrinseche (materiali usati, processo produttivo)
di due valvole di diversa produzione, in pratica diventa solo una questione di preferenza… di mero gusto. Tutto questo, fermo restando che si monti materiale di qualità quanto meno buona, ovvio.
Allora si potrebbe notare il timbro acidulo…(“tarty” direbbero gli inglesi) delle Genalex russe e preferirlo magari al timbro suadente delle G.E.C. del 1960.
Questi amplificatori di cui sono orgoglioso proprietario, suonano controllati, asciutti, molto definiti, sono dinamici e potenti con una timbrica di un equilibrio fuori del comune, superiore a quanto di meglio mi sia capitato di possedere
e/o ascoltare (Accuphase, MacIntosh, Quad).
Di grande bellezza la gamma medio alta, potentissima, penetrante gli acuti ti scuotono letteralmente l’anima (è un esperienza fisica)….senza romperla, senza evidenza di sibilanti fastidiose. I bassi sono presenti e controllati, smorzati perfettamente. La scena sonora è granitica e tridimensionale, fermissima e definita.
Ridate un’occhiata alle strumentali di questi apparecchi…signori, quest’uomo merita il rispetto e la considerazione di noi veri appassionati di valvole ed hi-fi.
Un consiglio: approfittatene.

Continue reading...

1 Responses to Ottimizzare il circuito con trasformatori SB-LAB

  • Finalmente il suono che mi piace! Prolungare l’ascolto soffermandosi con il sorriso sulle labbra a godere della qualità del suono riprodotto ed avere la conferma di aver speso bene il denaro investendo su un set di trasformatori audio SB-LAB è quanto mi sta capitando questi giorni. Non c’è bisogno di bluffare con se stessi per rendersi conto di essere di fronte ad una apparecchiatura audio di alta qualità, perchè di alta qualità è il suo circuito.
    Grazie Stefano.
    Avevo nel cassetto due quartetti di valvole KT88 Mullard e G.E.C. selezionati, delle EF86 Telefunken silver shield NOS, così ho deciso di sostituire le già ottime EF86 Teonex (Watford Valves) con le Telefunken e le Genalex Gold Lion di recente produzione russa con il quartetto G.E.C. del 1960, prima le une poi a seguire le altre mentre ho lasciato le sfasatrici 12AU7 RCA clear top (le mie ecc82 preferite) e le raddrizzatrici Philips Miniwatt GZ34 (Mullard).
    Non avevo mai provato questi cambi prima ma…si, data la bontà degli amplificatori modificati, ho ritenuto il caso di fare queste prove anche mosso da una certa curiosità.
    Chi legge potrebbe aspettarsi che io ora scriva che si è notato subito un miglioramento montando sul nuovo circuito queste rinomate e costose valvole, bene mi dispiace per chi rimarrà deluso dalla mia affermazione ma non è così.
    Gli amplificatori suonavano tremendamente bene prima con le russe e continuano a suonare strepitosamente bene anche con le kt88 G.E.C.
    Nessun cambiamento udibile che possa essere considerato migliorativo e questa è la chiara conferma che una valvola di pregio non può da sola migliorare più di tanto un ottimo circuito come del resto non può da sola modificare le sorti sonore di un circuito mal concepito.
    Nel caso degli amplificatori in oggetto invece possiamo davvero “solo” (vi paresse poco!) notare i cambiamenti nel suono che vengono inevitabilmente indotti dalle caratteristiche intrinseche (materiali usati, processo produttivo)
    di due valvole di diversa produzione, in pratica diventa solo una questione di preferenza… di mero gusto. Tutto questo, fermo restando che si monti materiale di qualità quanto meno buona, ovvio.
    Allora si potrebbe notare il timbro acidulo…(“tarty” direbbero gli inglesi) delle Genalex russe e preferirlo magari al timbro suadente delle G.E.C. del 1960.
    Questi amplificatori di cui sono orgoglioso proprietario, suonano controllati, asciutti, molto definiti, sono dinamici e potenti con una timbrica di un equilibrio fuori del comune, superiore a quanto di meglio mi sia capitato di possedere
    e/o ascoltare (Accuphase, MacIntosh, Quad).
    Di grande bellezza la gamma medio alta, potentissima, penetrante gli acuti ti scuotono letteralmente l’anima (è un esperienza fisica)….senza romperla, senza evidenza di sibilanti fastidiose. I bassi sono presenti e controllati, smorzati perfettamente. La scena sonora è granitica e tridimensionale, fermissima e definita.
    Ridate un’occhiata alle strumentali di questi apparecchi…signori, quest’uomo merita il rispetto e la considerazione di noi veri appassionati di valvole ed hi-fi.
    Un consiglio: approfittatene.

Lascia un commento

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.

Zero Feedback o Controreazione? Ascolta e Scopri Chi Mente

Articoli correlati:

Introduzione

Questo articolo è un doppio appuntamento: da un lato propongo alcune semplici ma efficaci modifiche a un piccolo amplificatore single ended cinese basato su valvole 6L6G ed ECC83; dall’altro, utilizzo proprio questo apparecchio come banco di prova per affrontare una delle questioni più discusse (e spesso fraintese) del mondo dell’alta fedeltà valvolare: la controreazione.

Ho scelto questo amplificatore economico come base per dimostrare — con misurazioni strumentali e registrazioni audio reali ascoltabili in cuffia — cosa succede realmente quando si inserisce o si esclude la controreazione in un circuito ben progettato. Il risultato è chiaro: con un corretto dosaggio, la controreazione non degrada affatto il segnale. Al contrario, preserva fedelmente il contenuto originale, introducendo solo minime variazioni. Viceversa, in modalità zero feedback, le alterazioni del suono sono evidenti, soprattutto su gamma bassa e risposta complessiva, al punto da rendere riconoscibile a orecchio nudo il cambiamento.

Questo non significa affatto che la tecnologia a valvole sia inutile o superata. Al contrario: il bello del mondo valvolare è proprio poter sperimentare, costruire, e modellare il proprio suono in base ai gusti personali, scegliendo una valvola piuttosto che un’altra, un condensatore invece di un altro, e andando alla ricerca di quelle sfumature che rendono ogni progetto unico. Tuttavia, è importante mettere a tacere certi falsi miti che si continuano a ripetere senza alcuna verifica oggettiva: come quello secondo cui la controreazione cancellerebbe informazioni e il zero feedback le preserverebbe. In questo test dimostro l’esatto contrario: è la controreazione a conservare l’integrità del segnale, mentre il circuito zero feedback aggiunge contenuti spuri che nell’originale non esistono.

Utilizzando bassi tassi di controreazione (senza mai esagerare) e giocando con la scelta di valvole, trasformatori e componentistica, si possono ottenere esperienze d’ascolto davvero interessanti, divertenti sia dal punto di vista didattico che musicale. È un terreno fertile per chi ama sperimentare, capire, e modellare il suono secondo i propri gusti.

Tuttavia, io sono convinto che questi esperimenti riuscirebbero ancora meglio se si affrontassero con la consapevolezza di voler alterare volontariamente il suono in modo piacevole, per ottenere un effetto “godereccio”, personale, anche creativo — piuttosto che restare inchiodati alla convinzione di cercare una fedeltà assoluta, mentre in realtà si sta modificando il segnale ma senza rendersene conto. Saper distinguere la ricerca della fedeltà da quella del carattere sonoro è fondamentale. Solo così l’autocostruzione diventa una forma di espressione consapevole e non un’illusione alimentata da miti tecnici distorti. Questo articolo vuole essere un contributo pratico e trasparente, dedicato a chi ascolta con le orecchie e misura con la testa, non con i pregiudizi.


Approfitto di questa opportunità per ricordare a coloro che sono alla ricerca di amplificatori valvolari a basso costo che è preferibile optare per una di queste scatolette cinesi disponibili sul mercato rispetto a una delle molte soluzioni discutibili e mal costruite offerte da smanettoni di Facebook, hobbisti o individui senza competenza che si trovano in giro.


L’intento di questo articolo

Nel corso degli anni, ho sempre condiviso con entusiasmo la mia esperienza e le conoscenze acquisite nella costruzione di amplificatori e trasformatori audio. Ho spesso espresso opinioni critiche verso alcune pratiche comuni del settore, ma comprendo anche che, dato il mio coinvolgimento diretto, qualcuno potrebbe pensare che io stia semplicemente promuovendo le mie idee personali.

Una delle mie battaglie è stata quella di chiarire la verità riguardo alla controreazione, spesso ingiustamente considerata responsabile di cattivo suono, problemi vari e perfino catastrofi. Al contrario, ho sempre evidenziato l’importanza di avere un’amplificazione con un fattore di smorzamento adeguato per godere di un ascolto piacevole, privo di bassi fastidiosi e disturbanti.

Navigando sul web e ascoltando podcast, ho incontrato persone che tentavano di confutare le mie affermazioni, forse in risposta ai dubbi sollevati dai miei articoli. È noto che spesso è più semplice convincere con argomentazioni superficiali piuttosto che con analisi approfondite. Molti venditori e televenditori cavalcano l’onda della credulità popolare, sostenendo che gli amplificatori “zero feedback” siano assolutamente superiori. Affermano anche che lo smorzamento non sia così fondamentale, e che i bassi fastidiosi siano solo una scusa per vendere casse acustiche speciali (spesso molto costose) proposte come unica soluzione a un problema che loro stessi hanno creato. È il classico caso di vendere prima la malattia e poi la cura.

Inoltre, alcuni critici sono arrivati persino a definire i miei trasformatori, che sono più grandi e costosi, come inutili, promuovendo prodotti economici e di qualità inferiore che promettono miracoli a prezzi ridotti. Credo che sia essenziale mantenere sempre uno spirito critico e non lasciarsi influenzare da idee estremiste senza solide basi tecniche. Ogni scelta deve essere ponderata in base alle proprie esigenze e preferenze sonore personali.

È naturale che il lettore si trovi disorientato di fronte a opinioni contrastanti, specialmente quando non si ha la possibilità di confrontare direttamente le varie soluzioni. Nel mondo degli amplificatori valvolari, dove il gusto personale può variare enormemente, non esiste una risposta unica e universale. Quello che piace a una persona potrebbe non piacere affatto a un’altra. Molti fattori influenzano l’esperienza d’ascolto, come l’ambiente, le preferenze individuali e la combinazione con altri componenti audio. Nonostante la frustrazione di non avere certezze assolute, è importante mantenere una mentalità aperta e curiosa, valutando attentamente le proprie esigenze, gusti e budget.

Sfortunatamente, ascoltare qualcosa che appare gradevole non garantisce sempre il massimo della qualità sonora. Spesso si è soddisfatti semplicemente perché non si è avuto modo di ascoltare qualcosa di superiore. Può capitare che un giorno si incontri un impianto audio di qualità superiore, e solo allora ci si renda conto che in precedenza non si era mai realmente ascoltato in modo ottimale.

Mi viene in mente l’esperienza di un mio cliente, che dopo anni di ascolto di un vinile dei Beatles, ha avuto l’occasione di ascoltarlo con un impianto di qualità superiore. Solo allora ha scoperto dettagli e sfumature sonore mai percepite prima, nonostante avesse già utilizzato amplificatori prestigiosi. Questo esempio mostra chiaramente che esistono livelli qualitativi raggiungibili soltanto con apparecchiature audio di alto livello.

Purtroppo, alcuni commercianti spingono gli appassionati in un continuo ciclo di acquisto e sostituzione di apparecchiature, alimentando insoddisfazione costante. Molti audiofili addirittura valutano un amplificatore più per il suo valore di rivendita che per la sua qualità sonora effettiva. Questo è un approccio sbagliato e controproducente. Ho visto persone sostituire amplificatori di qualità eccellente con prodotti di impatto sonoro deludente ma ben valutati dalla stampa specializzata. Ritengo che chi si comporta così non abbia realmente compreso cosa significhi l’audio di alta qualità e forse non saprebbe nemmeno distinguere il suono di un amplificatore pregiato da quello di un semplice citofono.

È fondamentale cercare un’esperienza di ascolto personale, effettuare ricerche, confrontare varie opzioni e, possibilmente, affidarsi a professionisti del settore che abbiano competenze approfondite e imparziali. Solo così è possibile fare una scelta consapevole e ottenere un amplificatore che garantisca un’esperienza di ascolto realmente soddisfacente, al di là delle mode commerciali.

Trovo triste che alcuni acquistino apparecchi audio solo per ostentare la propria ricchezza. Spesso ciò che viene pubblicizzato come eccellente delude le aspettative. Esistono prodotti costosi e blasonati che offrono prestazioni mediocri, così come prodotti più economici e meno conosciuti capaci di ottime performance.

Questo articolo vuole essere un contributo onesto, un invito a una riflessione personale. È destinato agli autocostruttori come un simpatico esperimento didattico che offre comunque un risultato sonoro soddisfacente. Non prometto il suono perfetto, ma garantisco un’esperienza piacevole e istruttiva. Il mio obiettivo resta quello di offrire una visione aperta e trasparente sul mondo dell’audio, affinché ciascuno possa scoprire e apprezzare il suono secondo le proprie preferenze e possibilità.

Il Nobsound 6p3p + 6n1 (6L6G + ECC83)

La base di questo esperimento è un piccolo amplificatore cinese, praticamente senza un vero nome. Si può trovare facilmente su vari siti di shopping online, disponibile sia già assemblato che in kit da montare. Lo si riconosce facilmente dalla foto, proposto con marchio Nobsound, sotto altri nomi o addirittura senza marchio. Si tratta probabilmente di una delle opzioni più economiche disponibili sul mercato.

Questo è lo schema elettrico originale:

I trasformatori originali di questo amplificatore hanno purtroppo un’impedenza di 3500 ohm, non adatta per l’uso con una valvola 6L6GB (o equivalente). Durante i test a banco, ottenevo una potenza limitata a circa 3,5 watt, con un livello di distorsione decisamente elevato: in pratica, una semionda veniva riprodotta bene mentre l’altra risultava fortemente compromessa.

Per migliorare la situazione, ho smontato i trasformatori originali. Non potendo sostituirli con trasformatori più grandi costruiti secondo il mio metodo (perché non c’era sufficiente spazio), ho scelto di riavvolgere i trasformatori originali utilizzando lo stesso rocchetto e lamierini di identiche dimensioni, ma ho sostituito i lamierini originali in semplice ferro-silicio con lamierini in ferro a grani orientati (GO). Ho realizzato così trasformatori con un’impedenza di 4500 ohm, ideale per la 6L6GB in configurazione Single-Ended, con un altro preciso obiettivo in mente.

In diversi articoli precedenti ho già evidenziato che molti amplificatori zero-feedback, inclusi alcuni di marchi prestigiosi, utilizzano trasformatori d’uscita con induttanze primarie insufficienti o nuclei prossimi alla saturazione. Questo approccio serve a mascherare i difetti più evidenti causati dall’assenza di controreazione, in particolare quei famosi bassi “gonfi” e fastidiosi. È evidente infatti che, scegliendo la strada dello zero feedback e rifiutando categoricamente la controreazione, questi bassi problematici debbano essere in qualche modo eliminati. Le soluzioni più comuni sono filtrare l’ingresso dell’amplificatore, utilizzare trasformatori d’uscita volutamente limitati, oppure abbinare casse acustiche che per loro natura siano già carenti nelle basse frequenze (ad esempio casse monovia o casse aperte).

Ecco lo schema, clicca sora per ingrandire, o clicca qui per scaricare ad alta definizione

Come si può notare, ho previsto un interruttore che consente di escludere il segnale di controreazione (NFB) a piacimento. Ho sostituito la valvola 6N1 con una ECC83, scelta necessaria per ottenere un adeguato fattore di smorzamento mantenendo al contempo un carico facilmente pilotabile per il finale. Anche la raddrizzatrice originale, una 5Z4, è stata sostituita con una GZ34, indispensabile per recuperare tensione utile: il trasformatore di origine cinese, infatti, tendeva ad avere un cedimento di tensione superiore al previsto.

Nota: questo schema è pensato per utilizzare valvole del tipo 6L6 / 6L6G / 6L6GA / 6L6GB / 5881 e anche le 6p3p. Sono invece escluse le 6L6GC e le 6N3C-e, che richiedono una tensione di griglia schermo più elevata. È comunque possibile adattare l’amplificatore a queste ultime modificando il valore della resistenza da 12k in serie alla schermatura con una di valore inferiore, fino a ottenere il punto di bias desiderato senza dover cambiare altri componenti. Non indico un valore preciso perché la corrente a riposo delle griglie schermo è spesso imprevedibile e può discostarsi dai valori riportati nei datasheet. Passiamo ora alle fasi di montaggio:

Per chi fosse curioso di sapere come sono riuscito a saldare a stagno sull’acciaio inox, consiglio di guardare questo video su YouTube: https://youtu.be/SHxo5tcNNMg. La procedura mostrata è identica a quella che ho utilizzato, con l’unica differenza che io ho impiegato del cloruro ferrico già pronto, anziché preparare la soluzione da zero. Senza questo trattamento galvanico (che ho effettuato con l’aiuto del mio alimentatore modificato) stagnare sull’inox sarebbe praticamente impossibile. Naturalmente, è indispensabile anche uno stagnatore a punta piatta (tipo cacciavite) da almeno 150 watt.

Passiamo ora alle consuete misurazioni strumentali. Ci tengo a chiarire un punto spesso oggetto di confusione: c’è chi sostiene che, in un circuito senza controreazione (zero feedback), la distorsione armonica totale (THD) aumenti in modo progressivo dalla potenza minima fino alla massima. Al contrario, secondo la stessa teoria, in un circuito retroazionato la THD sarebbe più elevata a bassissimo volume, per poi diminuire a volumi medi e risalire nuovamente man mano che ci si avvicina al clipping.

Questo comportamento – più simile a quello che ci si aspetterebbe da un finale in classe B piuttosto che da un single-ended – viene talvolta usato come argomento per sconsigliare l’uso della controreazione nei sistemi destinati all’ascolto a basso volume. L’idea sarebbe che, a potenze contenute, un circuito retroazionato distorca più di uno senza feedback.

Per verificare concretamente questa affermazione, vediamo i risultati della THD misurata sia in configurazione zero feedback che con la controreazione inserita, a diversi livelli di potenza, da 0,1 watt fino a poco prima del clipping. Confronteremo i valori per capire davvero cosa accade.

Con controreazione inserita Zero Feedback
0,1watt RMS – (0,18%) 0,1watt RMS – 0,85%
0,5Watt RMS – 0,47% 0,5Watt RMS – 2,45%
1Watt RMS – 0,73% 1Watt RMS – 3,6%
3Watt RMS – 1,31% 3Watt RMS – 6,2%
Proco prima del clipping (5watt) – 2,35% Proco prima del clipping (4watt) – 8,4%

Come si può osservare, il tasso di distorsione cresce in modo progressivo da un valore minimo fino alla soglia di clipping, sia nella configurazione zero feedback che in quella retroazionata. Tuttavia, la distorsione è sempre superiore nella versione senza controreazione, anche alla potenza minima misurata.

Naturalmente, ci sarà sempre qualcuno pronto a sostenere che il problema dipende da me: che non so progettare i circuiti, che i miei trasformatori non sono realizzati correttamente, o che le mie apparecchiature di misura non sono all’altezza — perché non sono costose o blasonate come quelle di altri. A queste critiche rispondo semplicemente così: lo schema è disponibile, potete costruirvelo da soli. I trasformatori posso realizzarli io, oppure potete affidarvi a chi preferite. Si tratta di un classico 22×30 con primario da 4500 ohm e secondari da 4 e 8 ohm, senza particolari pretese.

La potenza massima del circuito con controreazione attiva è di circa 6 watt, con una soglia di distorsione percettibile a partire da 5 watt. Il fattore di smorzamento è di 0,3 in modalità zero feedback e raggiunge 9 con la controreazione inserita. La banda passante, in configurazione zero feedback, è di 40 Hz – 40 kHz a -1 dB. Va precisato che il trasformatore è stato progettato appositamente con un taglio sulle basse frequenze, scelta obbligata data la dimensione contenuta del nucleo. Con la controreazione attiva, la risposta in frequenza si estende da 10 Hz (a -0,6 dB) fino a 40 kHz (-1 dB), offrendo una resa complessiva decisamente più estesa. Di seguito mostro i grafici comparativi… e qualche contenuto extra.

Banda passante con controreazione (carico resistivo) Banda passante zero feedback (carico resistivo)
Banda passante con controreazione (carico reattivo) DF = 9 Banda passante zero feedback (carico reattivo) DF = 0,3

Passiamo ora ai contenuti extra. Mi sono reso conto che molti lettori non comprendono appieno il significato dei grafici relativi al comportamento su carico reattivo. Per approfondire, rimando al mio articolo dedicato alla costruzione del carico reattivo.

In generale, c’è poca consapevolezza di cosa comporti realmente un basso fattore di smorzamento. Al di là delle classiche descrizioni — come quella del diffusore che, una volta spinto, continua per inerzia invece di seguire fedelmente il segnale — manca una comprensione concreta degli effetti sul comportamento reale dell’amplificatore durante l’uso.

Tutti sembrano concentrarsi esclusivamente sulla distorsione armonica e sulle sue componenti, mentre pochi si preoccupano di osservare cosa accade quando un finale con basso smorzamento pilota effettivamente un diffusore. Per questo motivo, ho realizzato due brevi filmati in cui mostro il quadrante dell’oscilloscopio, con l’amplificatore collegato a una cassa e alimentato da un generatore di funzioni.

Attenzione! Nei video seguenti sono presenti toni sinusoidali fissi. Si consiglia vivamente di abbassare il volume al minimo prima della riproduzione, soprattutto se state utilizzando cuffie. Questi suoni potrebbero risultare fastidiosi o persino dannosi per l’udito, oltre che per cuffie, altoparlanti di computer o smartphone. L’audio è comunque indispensabile per comprendere correttamente il fenomeno analizzato. Non mi assumo alcuna responsabilità per eventuali danni a dispositivi audio o all’udito derivanti dalla visione dei video. Procedete con cautela.

Iniziamo analizzando la situazione senza controreazione (Zero Feedback). Sullo schermo dell’oscilloscopio sono visibili due tracce: la traccia inferiore rappresenta il segnale generato dal generatore di funzioni, mentre quella superiore mostra il segnale effettivamente presente ai morsetti dell’altoparlante.

Come si può osservare chiaramente, mentre l’ampiezza della traccia inferiore (il segnale del generatore) rimane costante, quella superiore — ovvero il segnale in uscita dall’amplificatore — varia sensibilmente al variare della frequenza. È un comportamento che ricorda quello di un controllo toni integrato nell’amplificatore, con la differenza che in questo caso i punti di massima e minima risposta sono determinati dalle caratteristiche del diffusore.

Ciò che si osserva nei grafici relativi al carico reattivo rappresenta esattamente questo fenomeno: una risposta in frequenza alterata a causa del basso smorzamento. A chi si limita a parlare esclusivamente di distorsione armonica, rivolgo una domanda: questa non è una distorsione armonica, ma è pur sempre una distorsione. Come la vogliamo considerare? Vediamo ora cosa accade nella stessa situazione, ma con la controreazione attiva e un fattore di smorzamento pari a 9.

In questa configurazione, con la controreazione attiva, si può notare che l’ampiezza del segnale in uscita dall’amplificatore mostra variazioni minime, quasi trascurabili. Come già affermato in altri contesti, ritengo che un fattore di smorzamento pari a 5 sia ottimale per amplificatori di piccola potenza, come i single-ended. In apparecchi di potenza maggiore si può arrivare tranquillamente a un valore di 10. Superare questo limite è, a mio avviso, inutile e persino controproducente: un’eccessiva controreazione può compromettere la naturalezza del suono, rendendo l’amplificatore meno piacevole all’ascolto.

Passiamo ora a un altro contenuto extra: un confronto diretto tra il suono del circuito retroazionato e quello in configurazione zero feedback. Come ho realizzato questa prova? Ho collegato un attenuatore direttamente ai morsetti delle casse e ho inviato il segnale attenuato all’ingresso linea (“line in”) di un vecchio portatile, che normalmente utilizzo per pilotare un incisore laser.

Mi scuso per la qualità della registrazione: il portatile ha quasi 10 anni e l’ho pagato 40 €, quindi è inevitabile qualche disturbo di fondo dovuto alla sua scheda audio. Nonostante questo, le differenze sonore tra le due configurazioni risultano comunque percepibili.

Va detto che una dimostrazione più accurata avrebbe richiesto l’uso di un microfono binaurale, capace di catturare anche la componente distorsiva introdotta fisicamente dal diffusore, e non solo quella di tipo elettrico. Aggiungo infine che, avendo utilizzato trasformatori con nucleo di dimensioni ridotte e una primaria calcolata con induttanza modesta, l’amplificatore non presenta i tipici bassi gonfi e incontrollati nemmeno in modalità zero feedback.

Per iniziare, ho scelto una traccia audio royalty-free intitolata “At First Sight” di FiftySounds, scaricata dal sito EpidemicSound.com. Potete ascoltare il file originale al link indicato.

Mi raccomando: per cogliere appieno le differenze e i dettagli sonori, è fondamentale ascoltare con delle cuffie.

Ho riprodotto la traccia dal mio media center, collegato direttamente al Nobsound, e ho registrato il segnale prelevato dalle boccole delle casse: prima in configurazione zero feedback, poi con la controreazione attivata.

Successivamente, utilizzando un software di editing audio (Audacity), ho sovrapposto un segmento della registrazione originale allo stesso passaggio filtrato attraverso l’amplificatore. Grazie alla funzione “solo” del software, durante la riproduzione posso passare rapidamente da una versione all’altra, consentendovi di percepire chiaramente le differenze in tempo reale. Iniziamo con il confronto tra la traccia originale e l’uscita dell’amplificatore in modalità zero feedback.

Nella schermata audio, la traccia superiore rappresenta il file originale, mentre quella inferiore è la registrazione dell’amplificatore in configurazione zero feedback. All’ascolto, si nota chiaramente una perdita di corposità sulle basse frequenze e una certa opacità sulle alte, accompagnata da un’esaltazione della gamma media. Inoltre, anche se la registrazione elettrica già ne dà un’idea, è nell’ambiente reale che si percepisce come la riproduzione zero feedback risulti più “sporca”.

Passiamo ora alla registrazione con la controreazione attiva. A questo punto, tutti gli scettici convinti delle solite leggende metropolitane si aspetteranno un suono sgradevole: metallico, fastidioso, simile a vetri rotti, unghie sulla lavagna o il famigerato stridio della forchetta sul piatto. Vediamo (e ascoltiamo) se è davvero così.

Come nella prova precedente, la traccia superiore rappresenta l’audio originale, mentre quella inferiore è la registrazione del segnale dopo il passaggio attraverso l’amplificatore, questa volta con la controreazione inserita.

Ed ecco finalmente, una volta per tutte, la dimostrazione concreta: l’uso corretto della controreazione non degrada affatto il segnale. Al contrario, è la versione zero feedback a suonare peggio. Chi afferma di preferire lo zero feedback, nella realtà dei fatti, sta cercando un certo tipo di distorsione — e non sempre lo ammette.

La registrazione con controreazione è talmente fedele all’originale da risultare quasi indistinguibile, se non fosse per un leggero rumore di fondo e una lieve perdita di brillantezza, già presente anche nella versione zero feedback. Questi limiti sono imputabili esclusivamente alla scheda audio integrata (e tutt’altro che professionale) del vecchio portatile usato per la registrazione. Per completare lascio il download delle 2 registrazioni integrali, in futuro se avrò modo di ripetere esperimenti simili con strumentazione più seria (vedi microfono binaurale state certi che lo farò). Clicca qui per scaricare lo zip con i 2 file in formato flac

Continue reading...

1 Responses to Zero Feedback o Controreazione? Ascolta e Scopri Chi Mente

  • Questo è il mio amplificatore che Stefano ha sapientemente sistemato per me! Ho comprato questo ampli della nobsound in kit da assemblare per avvicinarmi al mondo delle valvole, e dopo un attento assemblaggio mi sembrava andasse bene ma mancava sempre qualcosa che mi facesse entusiasmare. Ho cominciato a cambiar valvole, condensatori , pot, connettori ed a correggere lo schema elettrico con vari trovati qua e la sui forum. Mi sembrava che ad ogni modifica qualcosa migliorasse, ma forse era solo frutto dell’ auto convincimento. Finchè sono capitato sul sito di SB Lab ed ho contattato Stefano che gentilmente mi ha aiutato a fare prove elettriche varie e dato suggerimenti, ma subito mi ha detto che il problema dell ampli erano i trasformatori di uscita, di impedenza sbagliati e poco performanti. Così mi sono deciso e ho portato il mio ampli nel suo laboratorio e credetemi se vi dico che dopo questo lavoro che ha eseguito il mio ampli suona come non avevo mai sentito!! Mi sono reso conto che tutto quello che avevo fatto in precedenza per migliorare il suono è stata una gran perdita di tempo e denaro. Affidatevi ad un esperto come lui, non buttate soldi in inutili cambiamenti di componenti Nos e pregiati, tanto non serve a nulla se tutto lo schema è sbagliato, ve lo dico con esperienza fatta sulle mie tasche! Grazie Stefano, ora mi godo il mio ampli e la musica!!

  • Avevo seguito vari consigli che mi avevano dato persone su facebook cambiando valvole con delle nos e cambiando condensatori, mi dicevano che sarebbe migliorato tantissimo ma alla fine non mi ha mai convinto, leggeri cambiamenti di tonalità ma non era mai troppo lontano dall’originale. Poi ho comprato lo schema premium e i trasformatori sb lab per modificare il mio amplificatorino , il risultato è sorprendente!!!! non è più lui, non ho mai sentito un suono così limpido e equilibrato davvero pazzesco e distnate anni luce, mi sono reso conto che le prime modifiche che ho fatto all inizio sono state una perdita di tempo e di soldi, suona meglio dell’amplificatore di marca con le 300B da migliaia di € del mio amico. Datemi retta seguite i consigli di stefano perchè valgono oro, i suoi trasformatori sembrano costosi rispetto ad altri rivenditori ma valgono quello che costano!!!!

Lascia un commento

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.

Dynaco A-410: Guida all’Amplificatore Push-Pull per Principianti

Il Dynaco A-410 rappresenta un’ottima opportunità per gli hobbisti che desiderano cimentarsi nel montaggio di un amplificatore valvolare senza dover affrontare schemi complessi o difficoltà tecniche elevate. L’ispirazione per questo progetto nasce dalla richiesta di uno schema semplice per un push-pull di EL84, che ha portato alla scoperta del circuito del Dynaco 410A: un design essenziale e accessibile, realizzabile con una coppia di EL84 e una ECC83, oppure con una coppia di 6V6 e una 6SL7. Ecco lo schema:

Sul mercato, in particolare su piattaforme online come eBay, sono disponibili PCB già pronti per l’assemblaggio, sui quali l’hobbista può montare facilmente il circuito completandolo con zoccoli, resistenze, condensatori e, soprattutto, trasformatori di uscita adeguati. Ed è proprio qui che si concentra il valore principale di questo articolo: la scelta dei trasformatori giusti è essenziale per ottenere un risultato ottimale e per sfruttare al meglio le potenzialità del circuito.

È importante sottolineare che, nonostante la sua popolarità, il Dynaco 410A non è un amplificatore HiFi di alto livello. Questo schema utilizza uno sfasatore di tipo “Paraphase”, una soluzione che semplifica la realizzazione del circuito ma introduce alcune limitazioni in termini di qualità sonora. L’accoppiata tra questo tipo di sfasatore e la controreazione negativa tende a generare una gamma media-alta e alta caratterizzata da una certa ruvidità, con un suono meno definito rispetto a configurazioni più raffinate come il long-tail pair.

Nonostante queste limitazioni, il Dynaco A-410 rimane un eccellente punto di partenza per chi desidera imparare il montaggio di circuiti valvolari, senza preoccuparsi eccessivamente della perfezione sonora. Il vero valore di questo progetto risiede nell’esperienza pratica, nella comprensione dei principi dell’amplificazione valvolare e nella soddisfazione di costruire con le proprie mani un apparecchio funzionante. Per ottenere i migliori risultati possibili, la scelta di trasformatori di qualità è fondamentale: con componenti ben progettati, si può migliorare la resa sonora complessiva e rendere questo progetto ancora più gratificante.

Andrea e l’Amplificatore della Morte

Andrea era un giovane e ingenuo appassionato di Hi-Fi valvolare, fresco di entusiasmo e desideroso di mettere le mani su un amplificatore a valvole degno di questo nome. Ma, ahimè, il suo viaggio nel mondo dell’audio vintage ha preso una piega tragicomica quando ha deciso di fidarsi dell’espertone di un gruppo Facebook.

Questo illuminato guru dell’elettrotecnica cantinara gli ha rifilato un amplificatore basato su basette Dynaco 410A, montate su un telaio interamente di legno. Sì, avete letto bene: legno. Anche il piano di montaggio delle valvole! Perché, chi ha bisogno di dissipazione del calore e schermatura quando si può avere un barbecue integrato? Ciliegina sulla torta, il tutto era stato decorato con una generosa mano di vernice micacea da inferriata, per un look elegante e raffinato… o almeno così pensava l’artigiano che l’aveva assemblato. Ma non finisce qui. I trasformatori? Ah, pura poesia! Selezionati con cura dalla categoria roba avvolta dal macaco che fuma…

Hanno dimostrato la loro qualità impareggiabile dopo poche ore di utilizzo, quando il trasformatore di alimentazione ha deciso di autoimmolarsi per il bene dell’umanità. Una perdita? Forse no. Considerando che il geniale progettista aveva deciso di non mettere un fondo all’amplificatore, quei bei 325 volt erano lì, a portata di dita, pronti a regalare ad Andrea un viaggio verso l’aldilà con grande gioia per l’INPS. E così, con il cuore spezzato e il portafoglio alleggerito, Andrea si è presentato da me con il suo “gioiello”. L’ho guardato. Lui mi ha guardato. Io ho guardato di nuovo l’amplificatore, sperando fosse solo un’allucinazione. E invece no!

La prima cosa che mi ha colpito? Una batteria di condensatori degna di una centrale nucleare. E ben quattro induttanze. Per alimentare due misere schedine da 10 watt! Perché il guru, oltre a essere un incompetente certificato, era anche un fanatico di “più condensatori ci metto, meglio suona”. Un orizzonte di condensatori così vasto che potevi sederti a contemplarlo come un tramonto sulle Ande.

Ben 3760uF da caricare ad ogni accensione con una povera GZ34 NOS, che evidentemente aveva fatto qualcosa di molto brutto nella sua vita passata per meritarsi una simile punizione. Perché, si sa, la GZ34 è venerata dagli audiofili come la dea delle raddrizzatrici, capace di far suonare come un violino anche il citofono del condominio. Peccato che, con quel carico di condensatori, ogni accensione fosse per lei l’equivalente di una martellata.

Se avesse potuto parlare, quella GZ34 avrebbe implorato pietà come l’omino nel film Alien: “Uccidimi, uccidimi!”. Ma il fato è stato clemente: il trasformatore di alimentazione è spirato per primo, risparmiandole ulteriori sofferenze.

Questo racconto è stato volutamente ironico e ha lo scopo di intrattenere chi legge i miei articoli, senza l’intenzione di offendere l’autore di questa… discutibile creazione audio. È sempre bello vedere la passione per l’autocostruzione, e non c’è nulla di male nell’essere hobbysti: sperimentare, imparare dai propri errori e migliorarsi fa parte del gioco. Tuttavia, c’è un limite che non andrebbe superato, soprattutto quando si cerca di trasformare un progetto amatoriale in un prodotto da vendere come se fosse un capolavoro dell’ingegneria audio.

Morale della favola: se siete appassionati di bricolage elettrico e vi piace smanettare con circuiti e valvole nel tempo libero, fate un favore all’umanità e limitatevi a costruire per voi stessi, senza spacciare certe creazioni per apparecchi di pregio o dal suono eccelso. E se siete alle prime armi, fate attenzione ai “guru” dei gruppi Facebook: il rischio di ritrovarsi con un’opera d’arte post-apocalittica anziché con un amplificatore funzionante è più alto di quanto possiate immaginare.

La Riparazione dell’A-410 di Andrea

Ho voluto aiutare Andrea a sistemare il suo amplificatore Dynaco A-410. Per farlo, ho realizzato un trasformatore di alimentazione 24S106, progettato per alimentare espressamente due basette Dynaco A-410 con EL84 e ECC83, utilizzando una valvola raddrizzatrice GZ34.

Ho recuperato una delle quattro induttanze di filtro da circa 10 Henry presenti nel circuito originale, che potete anche ordinarmi per i vostri progetti. La sezione di alimentazione, dal disegno molto semplice, è riportata nello schema qui sotto.

Durante il lavoro, ho spiegato ad Andrea come procedere con la riparazione e la modifica della parte di alimentazione, inclusa la connessione a terra delle carcasse dei trasformatori d’uscita. Gli ho anche procurato un quadrato di lamiera per realizzare il fondo dell’amplificatore, che poi ha portato da me per verificare come funzionasse. La potenza erogata è di 12 watt RMS per canale, con un fattore di smorzamento di 11.

Vale la pena notare che i trasformatori d’uscita sono ancora quelli originali, avvolti dalla schimmia che fuma, e, sebbene le strumentazioni sembrino indicare valori accettabili, il circuito, come tutti i circuiti degli anni ’50, utilizza tassi di controreazione così elevati che potrebbero far funzionare anche un trasformatore di alimentazione da campanello. Alla fine dei grafici, mostro la forma d’onda della sinusoide in uscita a 20 Hz, con una potenza che non supera i 7 watt circa a quella frequenza. Chi volesse realizzare uno di questi kit e ottenere risultati decisamente migliori può ordinare i miei trasformatori 8KPP84 con presa UL al 43%.

Banda passante @ 1 watt RMS

THD @ 1watt

Sinusoide @ 20Hz 7watt del trasformatore “immondizia da 2 soldi”

Qualche foto del montaggio di Andrea

Se anche tu sei appassionato di audio vintage e desideri cimentarti nella costruzione di un amplificatore Dynaco A-410, ti consiglio vivamente di non sottovalutare l’importanza della qualità dei trasformatori. Per ottenere il massimo dalle tue schedine PCB e costruire un amplificatore che suoni davvero bene, la scelta dei componenti è cruciale. Se sei alla ricerca di trasformatori di qualità superiore, non esitare a contattarmi. Posso fornirti trasformatori appositamente progettati per il Dynaco A-410, che ti garantiranno prestazioni ottimali e una resa sonora superiore.

Per maggiori informazioni e per effettuare un ordine, visita la mia pagina contatti. Sarò felice di aiutarti a portare il tuo progetto al livello successivo!

Continue reading...

Lascia un commento

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.