Audio Note P1 – Restauro completo e revisione professionale

Articolo aggiornato con foto d’archivio dei primissimi anni della mia attività: mi scuso per la qualità delle immagini, ma ho deciso di conservarle perché raccontano bene il “prima e dopo” del lavoro svolto.

Quando si parla di amplificatori valvolari musicali e dal suono elegante, il nome Audio Note è inevitabile. L’Audio Note P1 rappresenta uno dei modelli simbolo di questa filosofia: un integrato essenziale, dedicato a chi cerca naturalezza e micro-dettaglio più che pura potenza. Nato per offrire l’inconfondibile “voce” Audio Note in un formato accessibile, il P1 conquista per la sua capacità di dare vita alla musica, con un timbro caldo e una scena sonora ariosa che restano impressi anche dopo molti ascolti. L’esemplare protagonista di questo intervento porta con sé anche una piccola storia: acquistato anni fa da un appassionato di classica e jazz, ha macinato innumerevoli ore di ascolto senza mai essere toccato, fino a quando alcuni cedimenti interni hanno reso inevitabile una revisione completa.

Diagnosi iniziale

Quando l’amplificatore è arrivato nel mio laboratorio si presentava piuttosto provato. Diversi condensatori elettrolitici erano ormai esausti, alcune resistenze si erano bruciate e una delle valvole finali JJ Tesla aveva subito un guasto con corto interno, aggravando la situazione. Prima di ogni misura ho quindi provveduto a un’ispezione accurata del cablaggio e delle masse, per evitare che danni secondari rimanessero nascosti.

Ripristino e sostituzioni

Dopo la diagnosi ho sostituito tutti i componenti guasti e preventivamente rinnovato i condensatori più consumati. Tutte le valvole sono state rimpiazzate, eccetto una coppia di ECC83 ancora in perfetta forma e ben accoppiate: le ho mantenute nella sezione sfasatrice, preservando così un tocco dell’originale “voce” dell’apparecchio.

Analisi dei trasformatori d’uscita

Durante l’ispezione preliminare ho osservato che, nel trasformatore di uscita, l’ultimo strato del secondario non occupava completamente la gola del rocchetto. Questa scelta costruttiva, che può dipendere da precise valutazioni di progetto o da esigenze di avvolgimento, suggerisce una possibile incidenza sull’induttanza dispersa. Le successive misure hanno infatti confermato alcune caratteristiche coerenti con questa configurazione.

Misure e comportamento

  • Potenza massima: 10 W RMS, in linea con la targa.
  • Banda passante a 1 W: 20 Hz (–0 dB) ~ 17 kHz (–3 dB).
  • Banda passante a 6 W: la gamma bassa risulta più affaticata (distorsione già sotto i 30 Hz), mentre in gamma alta si osserva un lieve miglioramento, segno della compensazione parziale dell’induttanza dispersa.

Le misure evidenziano una banda passante con attenuazione di –3 dB già a 17 kHz. Questo significa che, all’ascolto, l’amplificatore può risultare leggermente carente nella gamma acuta e dare un’impressione di suono più “cupo o scuro” rispetto a progetti con trasformatori più estesi in frequenza. Senza sostituire i trasformatori d’uscita non è realistico ottenere un miglioramento sostanziale di questo aspetto; per contro, una scelta di diffusori dal carattere brillante in alto potrebbe compensare in parte la tendenza, offrendo un equilibrio tonale più neutro. Il fattore di smorzamento, pari a 8, resta comunque valido, ma ottenuto mediante un ricorso piuttosto spinto al negative feedback. Con un trasformatore limitato in banda, un NFB elevato può favorire instabilità: non a caso, in assenza di carico, ho riscontrato un’auto-oscillazione intorno ai 10 Hz, fenomeno che potrebbe occasionalmente presentarsi anche in condizioni reali quando l’impedenza dei diffusori cresce nella fase di ritorno del cono.

Risultato finale

Dopo la sostituzione dei componenti critici, la regolazione del bias e il collaudo strumentale, il P1 è tornato a suonare con la sua classica impronta Audio Note. L’intervento garantisce ora molti anni di ascolto affidabile, preservando quel carattere “british” che rende questo integrato ancora oggi una scelta amata dagli appassionati.

Continue reading...

Lascia un commento

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.

Riparazione e manutenzione del PrimaLuna ProLogue Two

Il PrimaLuna ProLogue Two è un amplificatore integrato a valvole molto apprezzato per la sua musicalità, la costruzione robusta e le soluzioni tecniche come l’Adaptive AutoBias. Come tutti gli apparecchi a valvole, però, richiede una certa manutenzione periodica: le valvole hanno una vita limitata, i contatti possono usurarsi e alcuni componenti elettronici non sono eterni.

Vale la pena sottolineare che il sistema Adaptive AutoBias, spesso citato come punto di forza, non è altro che un circuito di servo-bias: un comparatore a operazionali che controlla in automatico la polarizzazione delle valvole finali. Una soluzione semplice, ma molto efficace, che garantisce un funzionamento stabile senza la necessità di continue regolazioni manuali.

Nella mia esperienza di laboratorio ho riscontrato che questi amplificatori, pur essendo progettati con grande cura, tendono a mostrare alcuni difetti ricorrenti:

  • La scheda del servo-bias a volte sviluppa problemi di deriva e instabilità nella regolazione, rendendo difficoltoso mantenere corretta la polarizzazione delle KT88.
  • Gli zoccoli octal delle valvole finali, col tempo, possono allentarsi: le valvole restano leggermente “ballerine” e si creano falsi contatti. Questo può portare a situazioni pericolose come il red-plating di una KT88, con conseguente surriscaldamento, resistenze bruciate o guasti più seri.

Per questo motivo offro un servizio di revisione e manutenzione completa: sostituzione dei componenti critici, ripristino degli zoccoli, controlli approfonditi e tarature, così da restituire all’amplificatore l’affidabilità e la qualità sonora originali.

PrimaLuna ProLogue Two – Riparazione e manutenzione completa

Un cliente mi ha consegnato un PrimaLuna ProLogue Two dopo che una delle valvole finali era entrata in red-plate, surriscaldandosi fino a guastarsi. Per tentare una soluzione rapida, il proprietario aveva sostituito la valvola bruciata con un’altra di marca diversa, lasciando però le tre originali ancora in funzione. Questo genere di “mix” tra valvole differenti, seppur comprensibile come emergenza, non è mai consigliabile: infatti l’amplificatore continuava a manifestare difetti e instabilità.

Diagnosi iniziale

La prima operazione è stata una pulizia accurata con aria compressa, poiché l’interno dell’apparecchio era molto impolverato. Successivamente ho verificato lo stato dei componenti critici e ho riscontrato un problema comune a questi modelli: gli zoccoli octal delle valvole finali erano troppo lenti e laschi, tanto da far “dondolare” le KT88. Questo non solo compromette l’affidabilità dei contatti, ma può provocare falsi contatti con conseguenti guasti gravi, come valvole in red-plate e resistenze bruciate come conseguenza.

Interventi eseguiti

  • Sostituzione zoccoli: ho rimosso i quattro zoccoli octal difettosi e li ho sostituiti con nuovi zoccoli di qualità, dotati di contatti placcati oro per garantire maggiore affidabilità nel tempo.
  • Controllo valvole di segnale: ho testato tutte le valvole preamplificatrici. Una delle ECC82 originali risultava ormai consumata e fuori specifica, quindi l’ho sostituita con una coppia nuova di ECC82 Tung-Sol. Le due ECC83 originali PrimaLuna, invece, erano ancora in ottimo stato e sono state mantenute.
  • Nuovo quartetto di finali: per ripristinare una condizione di equilibrio e omogeneità, ho installato un quartetto di 6550 Tung-Sol nuove di fabbrica, scelte per affidabilità e coerenza timbrica.

Collaudo e rodaggio

Dopo gli interventi ho proceduto con un’accensione controllata sotto Variac, monitorando assorbimenti e stabilità di bias. L’amplificatore ha risposto correttamente e ha iniziato a funzionare senza alcun difetto. Come consuetudine, ho lasciato suonare il ProLogue Two per diverse ore in laboratorio, così da verificarne la piena affidabilità nel tempo.

Grazie a questa manutenzione, l’amplificatore è tornato ad essere affidabile, stabile e pronto per molti altri anni di musica, con contatti sicuri, valvole nuove e un funzionamento privo di rischi.

Un amplificatore conservato male, molto male!

Non tutti gli apparecchi arrivano in laboratorio nelle stesse condizioni. Alcuni hanno alle spalle anni di utilizzo regolare, altri invece una vita meno fortunata. Questo amplificatore, ad esempio, era stato conservato in un ambiente ostile: umidità elevata e probabilmente anche agenti chimici o esalazioni aggressive ne avevano compromesso l’interno. Quando è giunto da me, presentava pesanti segni di ossidazione e corrosione diffusa.

Il primo passo è stato lo smontaggio. Molte viti erano talmente arrugginite da richiedere la ripassata dei filetti con maschi nuovi per poter rimontare tutto in sicurezza. Ho pulito e riverniciato le ghiere dei condensatori di livellamento e ripristinato i supporti meccanici, ridando ordine e solidità all’interno dell’amplificatore.

Il guasto principale si era manifestato proprio sulla scheda di servobias. Le saldature corrosive avevano intaccato i sottili conduttori che collegavano la scheda alle valvole finali: due griglie erano rimaste “flottanti”, causando scariche e danni irreversibili al circuito.

Ho provato a recuperare la scheda originale, pulendola con spray specifici e ripassando le saldature, ma la situazione era compromessa: linee interrotte, passaggi corrosi e saldature che rilasciavano sostanze anomale al riscaldamento. Nonostante ore di tentativi, il circuito restava instabile e impossibile da tarare correttamente.

A quel punto non restava altra scelta: ricostruire la scheda da zero. Ho rilevato lo schema direttamente dalla PCB danneggiata, salvando solo alcuni componenti ancora validi, e ho realizzato un nuovo circuito su basetta millefori. Per praticità ho utilizzato due TL082 al posto del TL084 originario (che di fatto contiene due TL082 in un unico package). Ecco il risultato durante la fase di lavorazione:

Il nuovo servobias ha funzionato perfettamente al primo collaudo, restituendo all’amplificatore una regolazione stabile e sicura del bias. Dopo ore di test, l’apparecchio è tornato a suonare senza problemi, pronto a riprendere la sua funzione musicale nonostante le difficili condizioni di partenza.

Veniamo alle strumentali misurate sull’apparecchio campione con tutte le valvole nuove:

Potenza: 30 Watt RMS
Banda passante @ 1watt : 15Hz~34khz -3db
Banda passante @ 25watt: meno di 10Hz~25khz -3db con -1db a 10khz
Smorzamento: 1,5
Distorsione armonica THD a 1 watt: 0,3%
Distorsione armonica THD a 25 watt: inferiore all’1%

Le analisi di spettro, a 1 watt su carico resistivo:

A 25 watt sempre su resistivo:

Mentre sul carico reattivo su accentuano le armoniche dispari

Questo il grafico di banda passante a 1watt su carico resistivo

1 watt Su carico reattivo…

Il negative feedback è presente, ma in quantità piuttosto ridotta: lo si evince chiaramente dal fattore di smorzamento (DF) di circa 1,5. Questo valore è piuttosto basso e rende l’amplificatore poco adatto a pilotare diffusori reflex con grandi coni o con volumi interni importanti, perché emergono facilmente problemi di bassi gonfi, poco controllati e fastidiosi. Un comportamento che spesso, in modo superficiale, viene attribuito alle KT88, quando in realtà non è la valvola in sé a determinare questo tipo di resa, ma il basso smorzamento dovuto al limitato impiego di controreazione.

L’ingresso, infatti, risulta molto sensibile: basta un segnale piuttosto contenuto per portare l’amplificatore al clipping (anche se non ho misurato con precisione il valore di sensibilità). Durante le prove non ho riscontrato distorsioni della sinusoide nella zona tra gli 8 e i 15 kHz, distorsioni che sarebbero state presenti se fosse stato applicato un elevato NFB in abbinamento a trasformatori con una banda passante così modesta. Fa però riflettere il fatto che l’apparecchio mostri instabilità in assenza di carico, un fenomeno che comunque può capitare con trasformatori che presentano queste caratteristiche di banda.

Contatta il laboratorio

Se possiedi un PrimaLuna ProLogue Two (o un altro modello della stessa serie) che presenta problemi di stabilità, valvole consumate o difetti di funzionamento, non aspettare che la situazione peggiori. Una manutenzione eseguita per tempo può evitare guasti più seri e costosi, oltre a restituire al tuo amplificatore tutta la sua affidabilità e qualità sonora. Puoi contattarmi direttamente tramite la pagina Contatti SB-LAB per ricevere informazioni, valutazioni o un preventivo sulla riparazione del tuo apparecchio.

Continue reading...

3 Responses to Riparazione e manutenzione del PrimaLuna ProLogue Two

  • Non sono né un tecnico e quantomeno un esperto,ma ad orecchio posso dire che
    SUONA MOLTO MA MOLTO MEGLIO!
    Ottimo lavoro!!!
    Grande STEFANO

  • Ottimo lavoro!

  • Primaluna Prologue Two riparato a seguito di trasformatore di alimentazione in entrata andato. Lavoro non semplicissimo anche perchè il trasformatore originale recuperato era leggermente diverso da quello andato in corto pertanto la sostituzione ha comportato modifiche di non facile approccio. Ringrazio Stefano per la maestria e la bravura con la quale affronta casi complessi e difficili come il mio! Ora il mio Primaluna a ripreso a suonare come i vecchi tempi.

Lascia un commento

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.

Nuova vita per l’LX1321 di Nuova Elettronica: l’upgrade SB-LAB

Correvano gli anni ’90 quando la rivista Nuova Elettronica iniziava a proporre sul mercato una serie di amplificatori valvolari in scatola di montaggio. Tra questi, i più noti furono l’LX1321, con pre e stadio phono integrati, e il precedente LX1113, una versione più semplice senza sezione di preamplificazione.

Negli anni 90 questi kit si diffusero a macchia d’olio in Italia e oggi sono diventati oggetti ricercati ma spesso sopravvalutati. È però fondamentale chiarire un punto: non intendo criticare l’operato di Nuova Elettronica. Lo scopo di questi apparecchi era didattico: insegnare a maneggiare le valvole, a usare il saldatore e a capire le basi della circuiteria audio. Non erano progettati per essere amplificatori “definitivi”, ma per far crescere gli hobbisti.

Di fatto, si trattava di scatole di montaggio basate su una circuiteria dal sapore vintage e con trasformatori estremamente economici e dalle prestazioni molto limitate. Lo dico da tempo, e non sono l’unico: molti lettori negli anni mi hanno scritto per confermare quanto riportavo nei miei articoli. Ad esempio Luigi, che mi ha ceduto di recente il suo LX1321, mi scriveva così:

“Ciao, mi chiamo Luigi, ho letto il tuo articolo sull’amplificatore di Nuova Elettronica. Avevo assemblato al tempo l’amplificatore che da i problemi da te indicati. (…) Oggi mi trovo a vendere la mia casa e a trasferirmi nelle Filippine: l’amplificatore è in cantina da anni. Non amo gli sprechi, se ti interessa lo cedo volentieri.”

Molti altri, invece, hanno preferito criticarmi o addirittura insultarmi perché osavo dire che l’LX1321 non fosse poi così buono. Frasi del tipo “eh ma io ce l’ho e suona bene” sono all’ordine del giorno. Bisogna però essere chiari: il “suona bene” è soggettivo e limitato all’esperienza personale di ascolto. Se non si è mai sentito nulla di meglio, è facile credere di avere tra le mani un grande amplificatore, ma la realtà è che con trasformatori così poveri e un progetto del genere non si può andare lontano. Non è colpa di nessuno: chi s’accontenta gode… ma esiste molto di meglio. E non lo dico solo io: molti acquirenti di questo kit, dopo aver pasticciato per anni nel tentativo di migliorarlo, hanno finito per svenderlo per poche lire o regalarlo.

Ed è proprio qui che entra in gioco il mio lavoro: le modifiche che propongo trasformano l’LX1321 in un apparecchio di livello superiore, tanto che chi ha eseguito l’upgrade si è ritrovato a mettere in difficoltà amplificatori commerciali di marchi blasonati (che non cito per eleganza). Non si tratta di un affronto a Nuova Elettronica, ma di un secondo passo di apprendimento: dopo aver montato il kit, si può imparare ancora qualcosa di più sull’alta fedeltà a valvole.

Un cenno al modello precedente: LX1113

Prima dell’LX1321, Nuova Elettronica aveva proposto il kit LX1113, un push-pull con KT88/EL34, privo di sezione pre e phono. Circuitalmente non troppo diverso, ma con serigrafie del PCB e numerazione dei componenti differenti. Ne ho ricevuto uno tempo fa per studiarlo e la mia conclusione è stata piuttosto netta:

  • Il mobile, realizzato in un materiale che definire “legno” è un complimento (truciolato o cartone pressato), si smontava da solo.
  • Lo spazio era insufficiente per alloggiare trasformatori seri.
  • I trasformatori in dotazione erano di qualità talmente bassa da rendere inutile qualsiasi sforzo di upgrade.

In pratica, non ne vale la pena: se ne avete uno, divertitevi pure a pasticciarlo, ma non spendeteci soldi. Lasciate perdere modifiche fantasiose come montare triodi a riscaldamento diretto o tagliare il negative feedback: con trasformatori così scadenti otterreste solo gain eccessivo, bassi gonfi e fastidiosi, e una alta sensibilità alle interferenze.

Questi apparecchi vanno visti per quello che sono: kit didattici per imparare a costruire, non per fare alta fedeltà. Spendere cifre in valvole NOS su circuiti del genere è denaro buttato: qualsiasi amplificatore che utilizzi quei trasformatori non potrà andare molto meglio di così.

Perché ho voluto proporre una modifica?

La risposta è semplice: perché me l’hanno chiesto! Molti appassionati mi hanno sollecitato nel tempo a proporre un upgrade dell’LX1321, visto che le sue doti sonore non soddisfano poi così tante persone. E no: non è cambiando due resistenze o aggiungendo un condensatore “miracoloso” dopo aver tagliato il negative feedback che lo si fa andare bene. Serve un intervento strutturale, spiegato e documentato, che affronti i limiti reali del progetto. Quindi troll e detrattori mettetevi il cuore in pace: qui non si spara a zero su Nuova Elettronica, ma si racconta semplicemente la verità tecnica e sonora di questi kit.

Le misure strumentali della versione originale

Dell’esemplare originale di LX1321 che mi ha ceduto Luigi ho eseguito una serie di misure strumentali, che parlano da sole. Il grafico di THD e le forme d’onda in quadra a 100 Hz, 1kHz e 10kHz mostrano chiaramente quanto il circuito del pre e i trasformatori lavorino in maniera tutt’altro che ottimale.

THD

Forme d’onda in quadra a 100 Hz, 1 kHz e 10 kHz (sì, a 10 kHz in ingresso c’era davvero una quadra… ma quello che usciva dall’amplificatore era tutt’altra cosa).

Con valvole finali non nuove, ho misurato una potenza massima di circa 35 watt e un fattore di smorzamento pari a 3. Potrebbe sembrare basso, ma ho verificato che il collegamento della reazione negativa era effettivamente presente e funzionante: segno che i limiti arrivano proprio dai trasformatori.

A conferma della qualità della componentistica, il trasformatore di alimentazione di questo esemplare vibrava in maniera impressionante, pur senza manifestare surriscaldamenti anomali. Un chiaro indizio che non fosse bruciato, ma semplicemente assemblato con lamierini interni allentati come potete constatare nel video qui sotto.

Va aggiunto che questi risultati non sono nemmeno costanti da un esemplare all’altro: in base alle testimonianze ricevute e alle misure di altri LX1321, sembra che la qualità costruttiva dei trasformatori variasse sensibilmente, rendendo l’esito sonoro un po’ una lotteria. E per pietà verso chi è affezionato a questo apparecchio, evito di pubblicare il grafico di banda passante.

DSCN6012

Se sei interessato al kit di trasformatori, induttanze e isolatori per realizzare questo progetto contattami per avere il prezzo aggiornato.

Attenzione: Le modifiche di upgrade non sono pubbliche: vengono fornite in un manuale PDF riservato esclusivamente a chi acquista il set di trasformatori SB-LAB. Il motivo è semplice: l’intero progetto è stato sviluppato e collaudato unicamente attorno ai miei trasformatori. Non avrebbe alcun senso rendere pubbliche le modifiche, perché eseguirle con trasformatori presi “a caso” da chissà chi non porta a nessun risultato certo e può anzi generare problemi gravi (regola che vale per qualsiasi schema di qualsiasi amplificatore).

I trasformatori originali di Nuova Elettronica non sono in alcun modo utilizzabili per questa modifica (ma potete rivenderveli su ebay senza difficoltà). Parliamo infatti di un circuito a larga banda passante: proprio perché anche i trasformatori sono a larga banda, si ottiene la resa sonora Hi-End che caratterizza l’upgrade. Ma allo stesso tempo il cablaggio richiede grande cura e attenzione:

  • Masse perfette e contatti puliti sul telaio.
  • Rispetto della polarità di fase dei trasformatori (pena auto-oscillazioni attraverso la NFB).
  • Ingresso cablato con cavo schermato di buona qualità e senza loop di massa.
  • Accensione graduale con variac consigliata nelle prime prove.

Se avete acquistato i trasformatori per l’upgrade, il PDF con le istruzioni dettagliate è incluso. In caso di problemi o dubbi, SB-LAB fornisce assistenza per risolverli.

I problemi dello schema originale

Analizzando lo schema originale emergono diversi punti critici. La sezione phono basata su ECC83, oltre a non essere schermata e a trovarsi troppo vicina ai trasformatori e allo stadio finale, risulta poco utilizzabile: chi desidera davvero un ingresso pickup farebbe meglio ad adottare un pre esterno.

Schema LX1320-LX1321

Sugli ingressi linea (CD, Tuner, Aux, ecc.) compare un discutibile attenuatore ad L (R2/3, R4/5…), inserito solo per ridurre un segnale che poi viene immediatamente riaumentato dalla valvola V2: una soluzione illogica che complica senza dare benefici, perchè attenuare un segnale per poi doverlo amplificare di nuovo? A questo si sommano l’ulteriore attenuazione di R33 in serie al potenziometro volume e un controllo balance che peggiora ulteriormente il percorso del segnale.

Nella sezione finale LX1321 troviamo una induttanza doppia condivisa tra i due canali, scelta economica che introduce inevitabili intermodulazioni a bassa frequenza. Grave anche la griglia di una valvola collegata direttamente al cursore del potenziometro: con componenti di bassa qualità bastava un falso contatto per lasciare la griglia flottante, quando una semplice resistenza da 1 M? avrebbe risolto il problema.

Altro punto discutibile è lo snubber R39/C20 sulla placca del primo triodo: inserire capacità dentro un anello di NFB è la ricetta perfetta per rotazioni di fase indesiderate. Probabilmente l’hanno aggiunto solo per evitare oscillazioni, dato l’elevato tasso di controreazione. Infine, la seconda sezione di V3 viene usata come sfasatore catodina accoppiato AC con polarizzazione elettrostatica della griglia: una soluzione datata, tipica di certi ampli da chitarra anni ’50/’60, più adatta a produrre distorsione che ad alta fedeltà. Nell’immagine sotto come appare lo sfasatore di nuova elettronica e come esso sarebbe dovuto essere.

Come andrebbe fatto… Com’è…
catodina_demo_ok catodina_nuovaelettronica_schifo

Chi ha un minimo di esperienza con l’elettronica valvolare, vedendo lo sfasatore adottato da Nuova Elettronica, tende a pensare subito che non possa funzionare, poiché la griglia è praticamente riferita al suo stesso catodo e sembrerebbe quindi trovarsi in saturazione. In realtà la questione è più sottile: la presenza di R4 da 1M (che sarebbe stato meglio portare almeno a 10 M) fa sì che la griglia non sia del tutto flottante, ma ancorata con una resistenza molto elevata.

È un vecchio trucco già visto in apparecchi anni ’50: la griglia, pur senza polarizzazione classica, riesce a raccogliere elettroni dal flusso che scorre tra catodo e anodo, caricandosi elettrostaticamente e diventando negativa rispetto al catodo. Il problema è che questo tipo di polarizzazione è altamente instabile e porta con sé una forte distorsione, tanto che è diventata una sorta di marchio sonoro degli amplificatori da chitarra dell’epoca. Una scelta che può avere senso in ambito musicale, ma che è del tutto fuori luogo in un apparecchio che dovrebbe aspirare all’alta fedeltà. Subito dopo compare V4 come ulteriore stadio di guadagno: evidentemente lo sfasatore così realizzato era troppo “delicato” e instabile per pilotare direttamente le finali. Da lì si arriva alle valvole finali a bias fisso, al trasformatore di uscita e all’NFB che chiude il quadro di uno schema pieno di compromessi.

Come altri propongono di modificarlo

Su internet si trovano diversi siti e spazi amatoriali che propongono modifiche al progetto LX1321. Purtroppo, nella maggior parte dei casi, si tratta di interventi banali o addirittura peggiorativi: il risultato è solo quello di trasformare un circuito approssimativo in un altro circuito altrettanto approssimativo. Non è cattiveria: semplicemente, queste modifiche non affrontano i limiti reali del progetto, e quindi non portano a un miglioramento concreto.

Un esempio è quello di chi sconsiglia le KT88 cinesi e le sostituisce con altre valvole solo per “principio”. La realtà è che non tutte le valvole cinesi sono uguali: alcune sono decisamente migliori di certe produzioni dell’Est. Personalmente, le KT88 più affidabili che ho testato sono state le Tung-Sol.

Altro caso frequente è quello di montare valvole NOS pregiate e costose (come le 5814A National) su questo circuito. Una scelta inutile: è la solita psicologia distorta che “il suono lo fa la valvola”, quando in realtà a determinare il risultato è l’insieme del progetto. Montare valvole di pregio su uno schema pieno di limiti non cambia la sostanza, sembra cambiare qualche piccola sfumatura ma non ci si è allontanati molto da dove si era all’inizio.

Si leggono poi proposte come l’aggiunta di un condensatore di bypass sul catodo dello stadio pre, per “stabilizzare la polarizzazione”. In realtà, così si aumenta solo il guadagno di un circuito che già di suo guadagna troppo, ed è persino pieno di attenuatori passivi inseriti proprio per ridurlo. Un controsenso.

Il colpo di grazia, però, arriva da chi decide di tagliare la controreazione (NFB): da un lato si aumentano le armoniche “tenute a bada” dall’anello, ma dall’altro il guadagno schizza alle stelle, il potenziometro volume diventa ingestibile (basta sfiorarlo per far esplodere i diffusori) e il basso smorzamento introduce una valanga di problemi. Non solo: le piccole asimmetrie del potenziometro si traducono in forti squilibri tra i due canali, costringendo ad aggiustamenti continui col balance.

Il risultato? Un circuito già sbilanciato diventa ancora più instabile e poco gestibile. Ecco perché, pur con tutta la simpatia per l’entusiasmo degli hobbisti, queste modifiche non vanno prese sul serio: non risolvono i problemi di fondo e non trasformano certo l’LX1321 in un vero Hi-Fi.

Upgrade Premium: guida e trasformatori SB-LAB

Per chi quindi desidera davvero trasformare il vecchio LX1321 in un amplificatore di livello superiore, propongo un progetto premium che comprende l’acquisto del set di trasformatori SB-LAB insieme a un PDF esclusivo con la guida passo passo alla modifica.

Il PDF non è un semplice schema annotato, ma una guida illustrata con foto dettagliate che spiega nel concreto come intervenire sul PCB: quali componenti sostituire, quali piste tagliare e dove inserire i cavallotti. Seguendo le istruzioni, lo schema originale viene completamente stravolto e ricostruito in una versione totalmente diversa, ottimizzata e collaudata.

Ecco in sintesi i punti chiave dell’upgrade:

  • Riduzione della controreazione, per un suono più naturale e meno artificiale.
  • Nuovo sfasatore long-tail al posto del catodina, molto più lineare e stabile e dal suono molto migliore.
  • Corretto filtraggio dell’alimentazione della sezione pre con una coppia di induttanze 15S55, al posto dell’induttanza doppia di Nuova Elettronica che causava intermodulazioni tra i canali alle basse frequenze.
  • Nuova rete di NFB ricalibrata, con smorzamento notevolmente migliorato.
  • Suono morbido, pulito ed esteso su tutta la gamma, finalmente libero dalle limitazioni del progetto e dei trasformatori originali.
  • Trasformatori SB-LAB dedicati: nuovi trasformatori d’uscita e un trasformatore di alimentazione progettato ad hoc.

Il risultato finale è un ampli che nulla ha più a che vedere con l’LX1321 originale, ma che conserva il fascino della “scatola di montaggio” trasformandola in una vera macchina Hi-Fi. Chi fosse interessato ad acquistare il PDF con la guida integrale, unitamente al set di trasformatori SB-LAB, può contattarmi direttamente tramite email.

Foto della mia realizzazione!

Le strumentali del nuovo apparecchio

Se l’LX1321 originale faticava a erogare 40 Watt e mostrava limiti evidenti già dalle prime misure, l’amplificatore modificato con il kit SB-LAB si presenta come un progetto completamente rinato, con numeri che parlano da soli:

  • Banda passante a 1 Watt: da 10 Hz (-0 dB) fino a circa 75 kHz (-1 dB) – estensione lineare e ariosa, senza i tagli impietosi dell’originale.
  • Fattore di smorzamento (DF): 4 – finalmente un controllo serio sui diffusori, contro il fiato corto della versione stock.
  • Distorsione armonica (THD) a 1 Watt: 0,67 % – un valore degno di un vero Hi-Fi, non più i “cubi di fuzz” del progetto di partenza.
  • Sensibilità di ingresso: 4,5 Vpp (1,6 Vrms) – perfettamente bilanciata per interfacciarsi con sorgenti moderne.
  • Potenza massima: 55 Watt RMS per canale – un salto netto rispetto ai circa 40 Watt della versione originale.

In pratica, lo stesso telaio ospita oggi un amplificatore più potente, più pulito e molto più musicale, capace di giocarsela con macchine di fascia ben più alta.

Spettro a 1Watt

Banda passante @ 1 watt su carico resistivo

Banda passante @ 1 watt su carico reattivo

Tringolare @ 1khz e 10khz

Conclusioni

L’amplificatore così modificato suona mooolto meglio dell’originale. Il fattore di smorzamento (intorno a 4) non è da record, ma con lo stampato a disposizione non si potevano certo fare miracoli: se usate diffusori un po’ “molli” o di generose dimensioni, magari con reflex, potreste notare un pizzico di esaltazione in gamma bassa. D’altro canto, il tasso di NFB non è elevatissimo e, chissà, forse a qualcuno piace proprio così.

Se invece avete un pre o una sorgente particolarmente “pompata”, capace di uscire ben oltre i classici 5 Vpp dei lettori CD, si può pensare di ritoccare R52, cioè la resistenza di NFB, abbassandone leggermente il valore. Questo aumenterebbe il tasso di controreazione e quindi lo smorzamento. Attenzione però a non esagerare.

Detto questo, il suono finale è quello che conta: pulito, limpido, con acuti ariosi e gradevoli, senza ronzii né rumori di fondo, anche con diffusori da 91 dB di sensibilità. Per arrivare a questo risultato sono servite 32 ore di lavoro effettivo, più il tempo per i trasformatori e i componenti, altre ore a studiare come infilare un circuito completamente diverso su un PCB che non era nato per ospitarlo, più una buona dose di simulazioni su LTSpice per essere sicuro che tutto funzionasse. Infine, circa 5 ore di scrittura per questo articolo (almeno 10 con gli aggiornamenti).

Quindi, se apprezzate lo sforzo, premiatemi acquistando i trasformatori SB-LAB per eseguire l’upgrade: non solo avrete tra le mani un amplificatore che vi farà dimenticare l’LX1321 originale (e anche tanti apparecchi commerciali molto costosi), ma eviterete anche di perdervi in modifiche “fantasiose” che non portano da nessuna parte. E ricordate: se i trasformatori li prendete altrove, il risultato finale non sarà mai questo!

Qui sotto la realizzazione di un cliente SB-LAB

“Ho seguito la guida passo passo e, pur non essendo un tecnico professionista, sono riuscito a portare a termine la modifica senza difficoltà. Il risultato mi ha lasciato senza parole: l’ampli è diventato silenziosissimo, con bassi morbidi e un dettaglio sugli acuti che non avevo mai sentito prima. Posso dire che ora ho un vero Hi-Fi in salotto!”
Marco R.

Continue reading...

19 Responses to Nuova vita per l’LX1321 di Nuova Elettronica: l’upgrade SB-LAB

  • Grazie Stefano per aver dato vita a questo apparecchio, sono felice di sapere che il mio vecchio amplificatore adesso suona come doveva…
    Partirò per le filippine senza rimpianti. 🙂

  • Complimenti per tanto lavoro

  • le raddrizzatrici a riscaldamento diretto arrivano in temperatura in un paio di secondi, mentre le finali a riscaldamento indiretto impiegano anche 30 secondi, quindi se usi una raddrizzatrice DHT sbagli, se usi una raddrizzatrice IHT ivece è corretto, ma se ti riferisci a questo progetto una singola raddrizzatrice è non è abbastanza per alimentare tutto il circuito e in ogni modo se anche usassi 2 valvole raddrizzatrici andrebbe modificato il trasformatore di alimentazione e poi finiresti con i piedi pari in una sporta di altri problemi dovuti alla non stabilità della sezione di alimentazione che potrebbero innescare motorboat etc.

  • Per prima cosa grazie mille per la risposta esauriente.
    Con una raddrizzatrice a vuoto suppongo sia ugualmente non necessaria in quanto l’anodica sui condensatori di filtro dovrebbe salire lentamente con il riscaldarsi del catodo della rettificatrice o sbaglio?

  • Per “ritardo dell’anodica” si riferisce all’atto di applicare la tensione anodica solo dopo che i catodi delle valvole sono stati riscaldati adeguatamente. Tale pratica è finalizzata principalmente alla conservazione dei condensatori elettrolitici. Questo approccio mira a evitare situazioni in cui la tensione anodica sia attiva senza che i catodi delle valvole siano in funzione. In taluni casi, ciò potrebbe causare un’elevazione eccessiva della tensione a vuoto, superando i limiti massimi di tolleranza dei condensatori e provocandone il danneggiamento. In tanti amplificatori da chitarra è così, infatti le già altissime tensioni anodiche applicate per tirare per il collo le finali di potenza senza carico si innalzano pericolosamente oltre il limite dei condensatori per questo quasi tutti hanno un’interruttore di standy (molto vestigiale che ricorda gli anni 50 quando non era facile fare un temporizzatore come lo sarebbe oggi).

    Tuttavia, per il progetto in questione, questa pratica non è necessaria, poiché è stata adottata da un cliente di sua iniziativa. È importante notare che su Internet e sui social media circolano molte voci infondate. Ad esempio, si sostiene che l’applicazione di tensione con i catodi freddi possa causare la “strappatura degli elettroni”, danneggiare i catodi e provocare altri effetti negativi. Tali affermazioni, però, sono prive di fondamento e non trovano riscontro nella realtà.

  • Ciao Stefano/Fabio,

    cosa intendete con “ritardo sull’anodica”? Aspettare che i filamenti siano caldi?

    Grazie,
    Marco

  • Signor michelangelo capisco che lei l’ha progettato pasandosi su antichi progetti del williamson, ma il risultato all’ascolto è quello che è, quoto in toto la modifica prodotta di sb-lab che ho realizzato con piena soddisfazione e posso garantile che il suono è tutto un’altro pianeta.

  • Non sono un tecnico elettronico e quindi non mi addentro in disquisizioni a me ignote. Sono semplicemente il felice ed appagato proprietario del finale NE, modificato grazie a Stefano e le cui foto appaiono in questo link. Lo si può riconoscere dal mobile mogano e dai due occhioni vu meter frontali incorniciati dalla mascherina in ottone e monta le 6550. Per lui ho già detto in un altro post qui pubblicato. Ho seguito da sempre NE, sin dall’inizio e posseggo l’intera collezione tranne le ultime pubblicazioni di cui ho preso subito le distanze. Motivo? Non sembravano più di NE. Lo spirito di Nuova Elettronica per conto mio era quello di dare una poliedricità di progetti che spaziavano su tutto ad un prezzo che tutti potevano permettersi. Progetti vari montati funzionavano e funzionano ancora ma… e questo è il punto, quelli finalizzati all’audio eo Hifi, purtroppo non era così. La teoria esposta era completa ed allettante, ma il relativo circuito, probabilmente costretto dal prezzo finale, risultava purtroppo mediocre. L’economia “pratica” di ogni progetto la faceva da padrona e così mentre un interruttore crepuscolare funzionava e continua a funzionare a dovere, non era lo stesso per un progetto audio.
    Prendo per esempio il mio finale. Nasce dall’amplificatore valvolare LX 1320, esclusa la sua preamplificazione, (per questo possiedo LX1140) acquistato dopo aver letto del finale precedente in cui si mettevano in luce tutte le peculiarità di questo incredibile (a detta loro) finale ma con un cablaggio interno alquanto caotico e della pericolosa ed estrema difficoltà nella taratura del bias. La scelta del LX 1240 è stata presa per la sua ingegnerizzazione e pulizia di montaggio rispetto al precedente, fermo restando i suoi parametri di targa.
    Sia con il pre che con il finale, con il loro acquisto, ho voluto dare una ulteriore chance a NE. Il risultato complessivo all’inizio è stato buono, per quello che davano, ma poi, l’economicità dei progetti non si è fatta attendere.. Il mini trasformatore del pre ha tirato le cuoia e lo stesso ha fatto quello del finale che ronzava più di un favo di vespe. Per non parlare di una usura anomala dei tubi. I miei diffusori, sono una coppia di ESL 63 Pro, mi facevano notare che qualcosa non andava, per non parlare poi delle continue e snervanti tarature del bias. Conosciuto Stefano, ho provato, e quando me lo ha riconsegnato non credevo alle mie orecchie. Questo dimostra a parer mio che NE, in fondo qualcosa di buono in teoria lo faceva, ma in pratica, contenendo i costi, no.

  • Grazie Stefano, per il capolavoro che hai creato partendo dall’LX1321 che io consideravo ben suonante. Su internet girovagando ho incontrato il tuo sito, mi è piaciuto. Provare? perchè no! è uscita una meraviglia ora si che si parla di HIFI, ora si che si ascolta veramente la musica, non l’impianto, lui fa solo il suo dovere. Suona come non potevo neanche minimamente immaginare… le mie Quad mi hanno ringraziato e ti ringraziano

  • Grazie.

  • Devi collegare il tester nella scala dei 2volt sulla resistenza di test point (quella in serie sotto il catodo) e conoscendo il valore di questa resistenza e la corrente che dovrà passarci, con la legge di ohm calcoli la tensione che dovrai leggere sul tester, quindi colleghi il tester sulla resistenza ad amplificatore acceso e se non leggi la tensione che ci si aspetta devi regolare il trimmer del bias fino ad ottenerla.

  • Salve, avrei una domanda in merito al problema con la regolazione della corrente di riposo. Qualcuno può descrivere come farlo? Non conosco l’italiano, mi scuso in anticipo per gli errori.

  • 2 induttanze separate non intermodulano, perchè sono separate. Quando le accoppi magneticamente invece sì… ad esempio nel 1240 modificato l’accoppiamento magnetico tra le 2 induttanze causava l’innesco di una leggera oscillazione a bassa frequenza che compariva non solo nel montaggio reale ma anche su Spice. Non c’è nessun segreto, lo hanno fatto solo per risparmiare.

  • Avevo letto da qualche parte che le induttanze doppie di NE erano avvolte in contro fase per limitare appunto problemi di intermodulazione a bassa frequenza…bisognerebbe analizzarle con oscilloscopio per scoprirlo

  • Ciao Stefano,
    Ti comunico che ho ultimato il montaggio dell’ampli (upgrade LX1321 NUOVA ELETTRONICA).
    Nonostante il cablaggio in aria è andato tutto per il meglio al primo colpo! (ovviamente prima accensione col variac).
    Ti faccio i complimenti per i trasformatori, mai visto una risposta in frequenza cosi’ ampia (sinusoide perfetta e stabile da 10Hz a 76.000Hz!), onda quadra a 100, 1000, 5000Hz perfetta, una quarantina di watt con KT90, DF 4,2 circa.
    Suna molto bene, almeno per i miei gusti, ovviamente ci sara’ roba che suona meglio ma considerando che e’ una modifica di un circuito precedentemente fatto male direi che e’ ottimo.
    Entro con un preampli a valvole sempre di NE con componenti migliorati, e, come dicevi tu, il suono viene ulteriormente distorto, entrando direttamente con un lettore cd la faccenda cambia di molto.
    Ho fatto lievi modifiche (consigliate da te):
    -sull’anodica ho inserito un elettrolitico da 1000uF 650V (al posto dei due in serie da 500uF) e in parallelo allo stesso ne ho messo uno da 10uF e un ulteriore da 0.1uF in polipropilene.
    -Ho messo un altro polipropilene di bassa capacita’ in parallelo a ciascun elettrolitico sulla sezione pre (C1-C2-C5)
    -Inserito un ritardo sull’anodica.
    -Ho eliminato il potenziometro in ingresso entrando direttamente nella griglia della ecc81 e mettendo una resistenza da 50Kohm tra ingresso e massa.

    Grazie ancora.

    Fabio

  • Ho eseguito la modifica con i trasformatori Sb lab e devo dire che sono rimasto veramente colpito amplificatori che suonano cosi’ non li senti spesso nemmeno nei negozi hi end e pensare che si parte da quel rottamino di nuova elettronica il risultato finale lascia senza fiato, trasformatori veramente ben fatti che nulla hanno da invidiare a roba super ricercata e molto costosa, veramente complimenti.

  • Perchè dovrei prende in giro? l’apparecchio dell’articolo sta a roma da un mio caro amico, tra un pò dovrebbero darmene un’altro per fare la stessa cosa così pubblico anche le strumentali acquisite con nuovo strumento computerizzato che non avevo al tempo del primo articolo

  • Ciao, mi fai paura…
    Ma quanto sei preparato?
    O ci prendi in giro.
    Comunque grazie, articolo affascinante.

Lascia un commento

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.